Supplementary Materials:

Supplementary Figure S1 Classification of gout.

Supplementary Figure S2 Result of principal component analysis including case and control samples used in this GWAS and four HapMap populations.

Supplementary Figure S3 Quantile-Quantile plot of p value distribution for association.

Supplementary Figure S4 Regional association plots for six discovered loci (Larger version of Figure 2).

Supplementary Figure S5 Cumulative effect of six gout-associated SNPs for developing gout.

Supplementary Figure S6 Relationship between clinical parameters (FE_{UA} and UUE) and the SNPs of *SLC2A9* and *ABCG2*.

Supplementary Figure S7 Extended regional association plot of *MYL2-CUX2* locus.

Supplementary Table S1 Clinical characteristics of case and control.

Supplementary Table S2 Clinical parameters for each specific type of gout patient.

Supplementary Table S3 Concomitant diseases of gout patients.

Supplementary Table S4 Summary of GWAS and replication study of 16 SNPs.

Supplementary Table S5 Power of the present study design.

Supplementary Table S6A Imputation analysis near *MYL2-CUX2* locus.

Supplementary Table S6B Imputation analysis near *GCKR* locus.

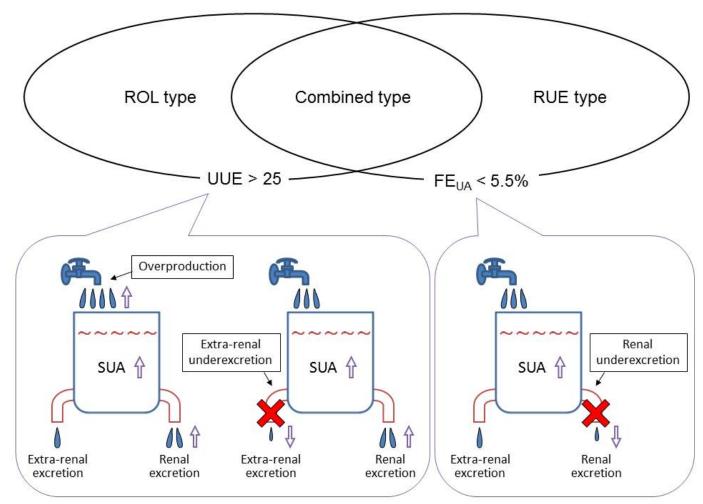
Supplementary Table S6C Imputation analysis near *CNIH-2* locus.

Supplementary Table S6D Imputation analysis near *MAP3K11* locus.

Supplementary Table S7A Univariate and multivariate logistic regression including three SNPs of *ABCG2*.

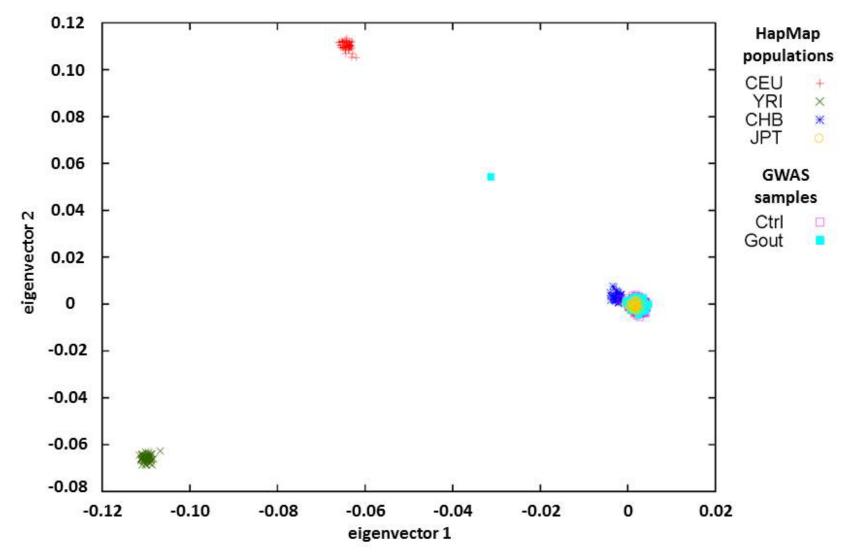
Supplementary Table S7B Association analysis of gout with *ABCG2* dysfunctional missense variants.

Supplementary Table S8 Magnitude of gout risk associated with the number of risk alleles.

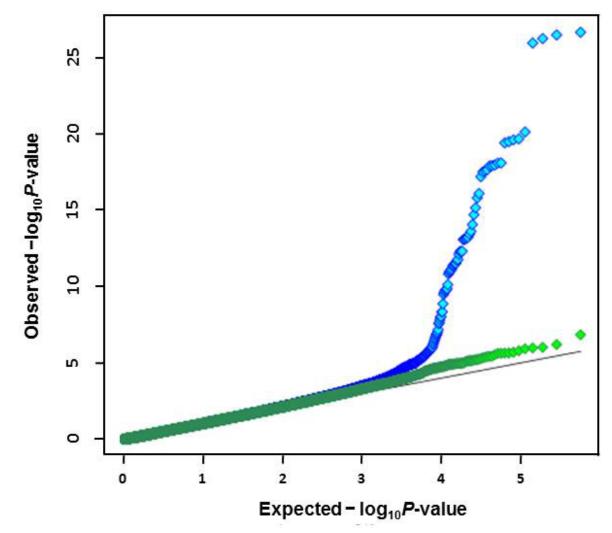

Supplementary Table S9 Association analysis between seven SNPs and three uric acid-related parameters.

Supplementary Table S10 Linkage disequilibrium among rs4073582 of *CNIH-2*, rs10791821 of *MAP3K11*, and rs504915 of *NRXN2*.

Supplementary Table S11 Multivariate logistic regression analysis adjusted with rs504915 of *NRXN2*.

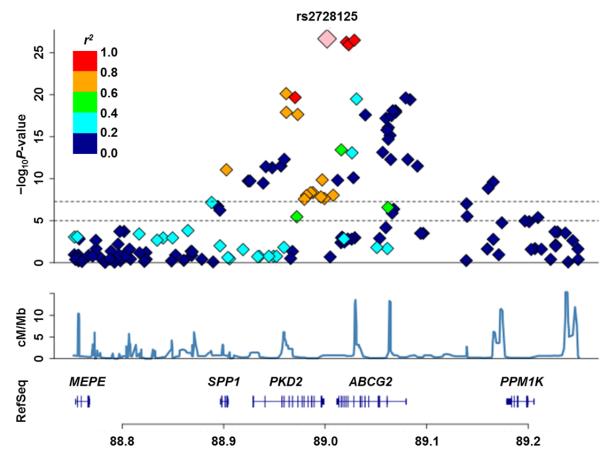

Supplementary Methods

References for Supplementary Methods

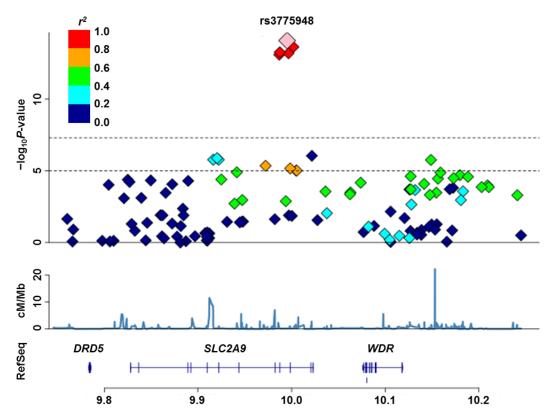


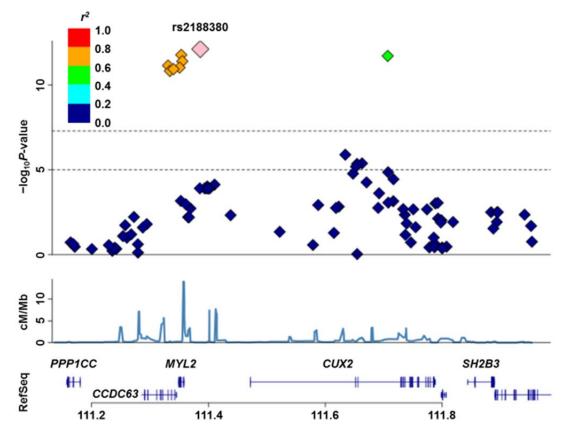
Supplementary Figure S1 Classification of gout.

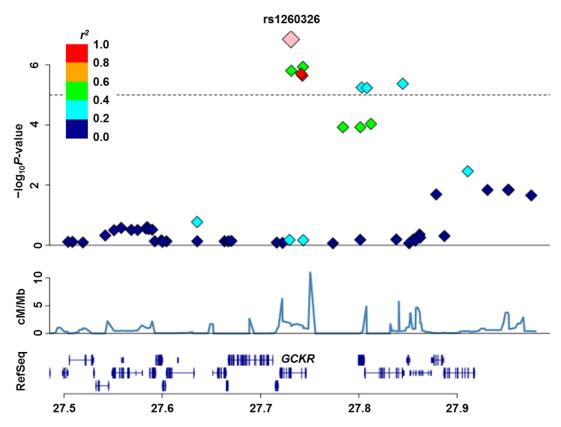
Gout can be pathophysiologically classified into the 'renal overload' (ROL) type, the 'renal underexcretion' (RUE) type, or the combined type, based on the clinical parameters, UUE and FE_{UA} . The unit of UUE is 'mg/hr/1.73m².' Urate is an end-product of purine metabolism, and excreted from kidney (renal excretion pathway) or from extra-renal tissues (extra-renal excretion pathway). Therefore, elevated SUA with high UUE (>25 mg/hr/1.73m²) is caused by renal urate overload (overproduction and/or extra-renal underexcretion of urate), while increased SUA with low FE_{UA} (<5.5%) results from renal urate underexcretion. SUA, serum uric acid. UUE, urinary urate excretion. FE_{UA} , fractional excretion of urate clearance.

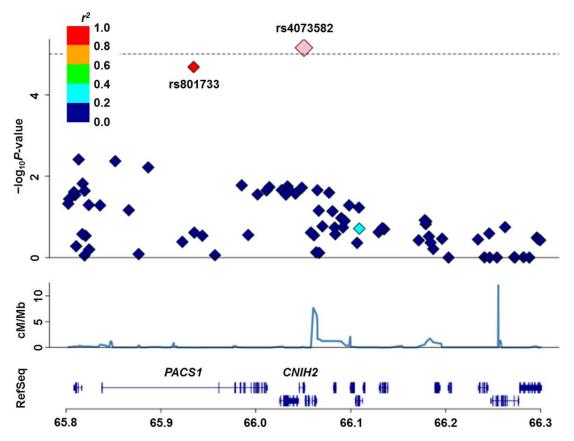


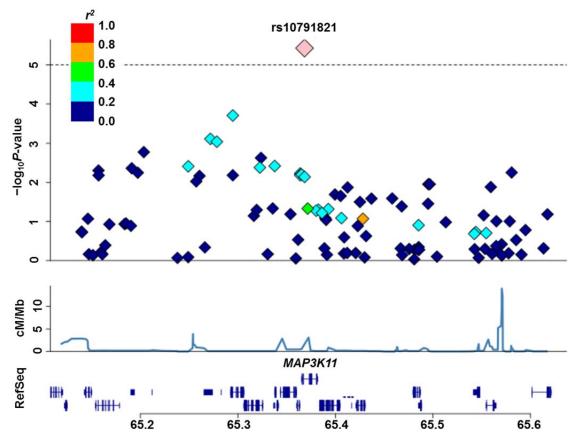
Supplementary Figure S2 Result of principal component analysis including case and control samples used in this GWAS and four HapMap populations. JPT, Japanese in Tokyo, Japan. CEU, CEPH (Utah residents with ancestry from northern and western Europe). YRI, Yoruba in Ibadan, Nigeria. CHB, Han Chinese in Beijing, China.

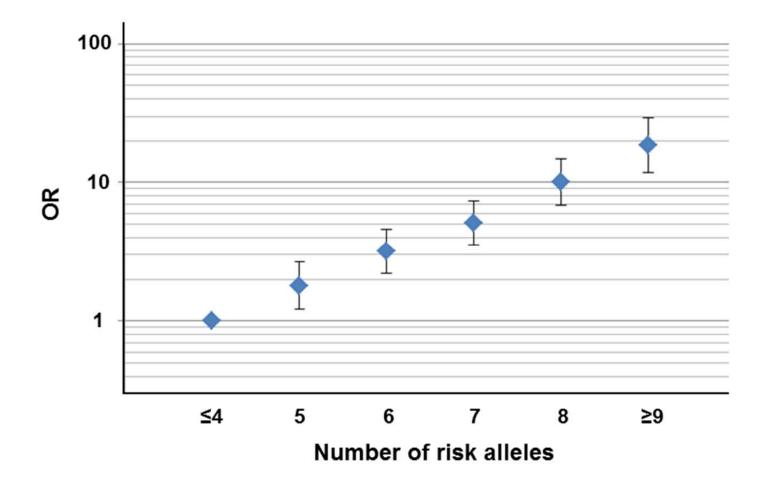



Results for all SNPs tested are plotted in blue. Results excluding SNPs within 500 kb from the SNPs strongly associated at $p < 5.0 \times 10^{-8}$ (rs2728125 of *ABCG2*, rs3775948 of *SLC2A9*, and rs2188380 of *MYL2-CUX2*) are plotted in green.

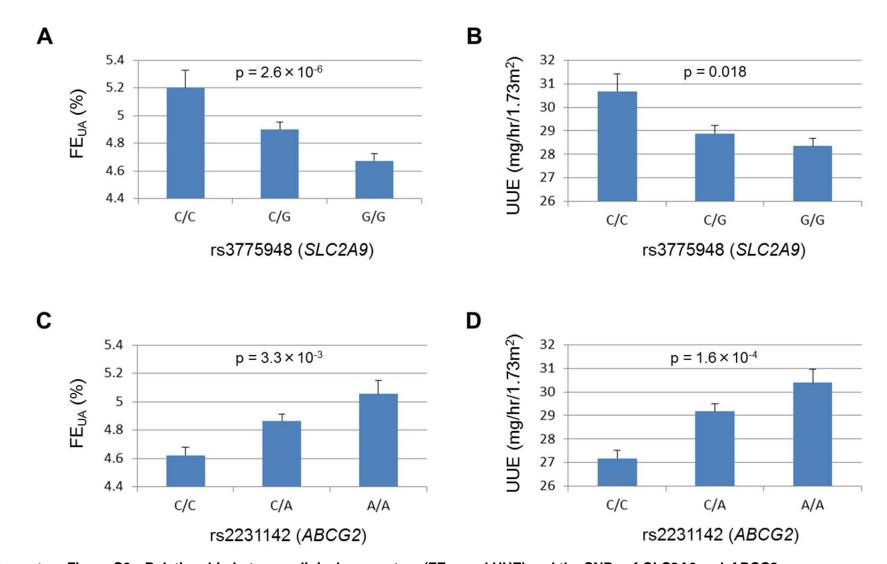

Supplementary Figure S4A Regional association plots for six discovered loci (Larger version of Figure 2A; *ABCG2* locus).

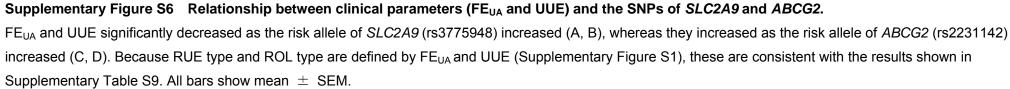

Supplementary Figure S4B Regional association plots for six discovered loci (Larger version of Figure 2B; *SCL2A9* locus).

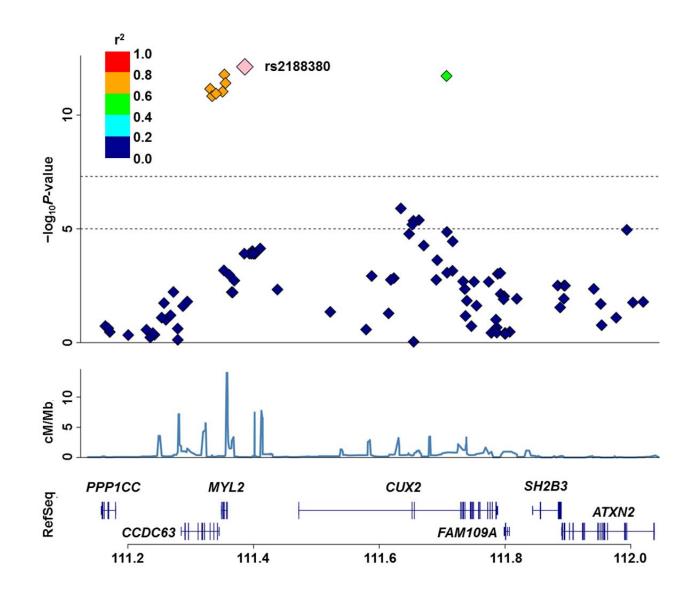

Supplementary Figure S4C Regional association plots for six discovered loci (Larger version of Figure 2C; *MYL2-CUX2* locus).


Supplementary Figure S4D Regional association plots for six discovered loci (Larger version of Figure 2D; *GCKR* locus).

Supplementary Figure S4E Regional association plots for six discovered loci (Larger version of Figure 2E; *CNIH-2* locus).




Supplementary Figure S4F Regional association plots for six discovered loci (Larger version of Figure 2F; *MAP3K11* locus).



Supplementary Figure S5 Cumulative effect of six gout-associated SNPs for developing gout.

A genetic risk score was defined as the number of risk alleles over the following six SNPs: four SNPs identified by the present study (rs3775948 of *SLC2A9*, rs2188380 of *MYL2-CUX2*, rs1260326 [Leu446Pro] of *GCKR*, and rs4073582 of *CNIH-2*) and two nonsynonymous SNPs (rs72552713 [Gln126Ter] and rs2231142 [Gln141Lys] of *ABCG2*), which have been established as strong gout risk SNPs.

Supplementary Figure S7 Extended regional association plot of *MYL2-CUX2* locus.

Near rs2188380 of *MYL2-CUX2*, there is rs653178 of *ATXN2*, which was previously reported in European ancestry to have an association with SUA, although rs653178 is monomorphic in a Japanese population. Conversely, rs2188380 identified in the present study with Japanese is monomorphic in European and African populations.

Supplementary Table S1 Clinical characteristics of case and control

	GWAS	stage	Replicat	ion stage
	Case	Control	Case	Control
Number	945	1213	1048	1334
Age (year)	46.5 ± 11.2	65.8 ± 8.4	44.9 ± 11.4	52.4 ± 8.6
Body-mass index (kg/m ²)	25.1 ± 3.6	21.8 ± 3.3	25.0 ± 3.5	23.2 ± 2.7
Serum uric acid (mg/dl)	8.5 ± 1.2	5.5 ± 1.1	8.6 ± 1.3	5.6 ± 0.9

Plus-minus values are means ± SD

Supplementary Table S2 Clinical parameters for each specific type of gout patient

	Number (%)	SUA	FE _{UA}	UUE
ROL type	375 (23.2%)	8.18 ± 1.10	6.73 ± 1.25	35.8 ± 8.3
RUE type	509 (31.6%)	8.38 ± 1.16	3.84 ± 0.79	20.5 ± 3.5
Combined type	664 (41.2%)	8.83 ± 1.25	4.40 ± 0.70	31.8 ± 6.9
Normal type	65 (4.0%)	7.72 ± 1.12	6.46 ± 0.90	21.2 ± 3.5
All	1613 (100%)	8.49 ± 1.22	4.85 ± 1.46	28.7 ± 8.9

Plus-minus values are means \pm SD

SUA, serum uric acid; FE_{UA}, fractional excretion of urate clearance; UUE, urinary urate excretion; ROL, renal overload; RUE, renal underexcretion.

Among 1993 clinically-defined cases, 1613 patients had information such as clinical parameters (UUE and FE_{UA}) to classify their clinical subtypes.

Supplementary Table S3 Concomitant diseases of gout patients

Number (%)	Hyportopoion	Dyslipidemia	Diabetes mellitus	Ischemic heart	Stroke	Renal impairment*
	Hypertension	Dyslipidemia	Diabetes menitus	disease	Slicke	Renarimpaiment
GWAS stage	249 (26.3%)	42 (4.4%)	37 (3.9%)	19 (2.0%)	9 (0.95%)	11 (1.2%)
Replication stage	317 (30.2%)	58 (5.5%)	42 (4.0%)	26 (2.5%)	9 (0.86%)	4 (0.38%)
All	566 (28.4%)	100 (5.0%)	79 (4.0%)	45 (2.3%)	18 (0.90%)	15 (0.75%)

*Renal impairment is defined with high serum creatinine (\geq 1.5 mg/dl).

							GWAS§			Rep	plication study ^{ll}		Meta-analy	sis ^{††}	Heteroge	neity
					F	req.			F	req.						
SNP*	Chr.	Position $(bp)^{\dagger}$	Gene	A1/A2 [‡]	Cases	Controls	OR (95% CI)	p Value	Cases	Controls	OR (95% CI)	p Value ^{‡‡}	OR (95% CI)	p Value ^g	Cochran's Q	≀ I ² (%)
rs1260326**	2	27730940	GCKR	T/C	0.62	0.54	1.39 (1.23-1.57)	1.2×10 ⁻⁷	0.61	0.55	1.32 (1.18-1.49)	2.8×10 ⁻⁶	1.36 (1.25-1.48)	1.9×10 ⁻¹²	0.57	0
rs16835687	3	124327247	KALRN	G/A	0.17	0.12	1.48 (1.24-1.75)	7.8×10⁻ ⁶	0.15	0.12	1.22 (1.03-1.45)	0.019	1.34 (1.12-1.62)	1.9×10⁻³	0.12	58.2
rs4637240	3	127150025	PLXNA1-TPRA1	C/T	0.87	0.81	1.5 (1.27-1.77)	1.8×10⁻ ⁶	0.84	0.83	1.08 (0.92-1.26)	0.35	1.27 (0.92-1.76)	0.15	4.3×10⁻³	87.7
rs3775948 ^{**}	4	9995182	SLC2A9	G/C	0.68	0.56	1.64 (1.45-1.86)	6.7×10 ⁻¹⁵	0.67	0.56	1.57 (1.40-1.77)	7.6×10 ⁻¹⁴	1.61 (1.47-1.75)	5.5×10 ⁻²⁷	0.63	0
rs2728125 ^{**}	4	89001893	ABCG2	C/T	0.40	0.25	2.05 (1.80-2.34)	1.5×10 ⁻²⁷	0.40	0.24	2.03 (1.79-2.30)	8.3×10 ⁻²⁹	2.04 (1.86-2.23)	7.2×10 ⁻⁵⁴	0.90	0
rs6916538	6	100618009	MCHR2-SIM1	A/G	0.51	0.44	1.34 (1.19-1.51)	2.0×10 ⁻⁶	0.48	0.46	1.09 (0.97-1.23)	0.13	1.21 (0.99-1.48)	0.062	1.7×10⁻²	82.4
rs731305	7	157682840	PTPRN2	C/T	0.63	0.56	1.36 (1.20-1.54)	8.9×10 ⁻⁷	0.61	0.61	1.02 (0.91-1.15)	0.70	1.18 (0.89-1.56)	0.25	1.1×10⁻³	90.7
rs7007064	8	63099432	ASPH-NKAIN3	A/C	0.76	0.70	1.38 (1.21-1.59)	3.2×10⁻ ⁶	0.73	0.75	0.90 (0.79-1.03)	0.12	1.12 (0.73-1.70)	0.61	8.8×10⁻ ⁶	94.9
rs10791821**	[*] 11	65368323	MAP3K11	G/A	0.94	0.90	1.75 (1.38-2.22)	2.8×10 ⁻⁶	0.94	0.92	1.41 (1.12-1.77)	3.4×10 ⁻³	1.57 (1.33-1.85)	1.0×10 ⁻⁷	0.19	41.2
rs4073582 ^{**}	11	66050712	CNIH-2	G/A	0.95	0.91	1.78 (1.39-2.29)	5.3×10⁻ ⁶	0.94	0.91	1.55 (1.23-1.96)	1.6×10⁻⁴	1.66 (1.40-1.96)	6.4×10 ⁻⁹	0.43	0
rs11216561	11	117685575	FXYD2-DSCAML1	C/T	0.11	0.07	1.70 (1.38-2.10)	7.2×10 ⁻⁷	0.10	0.08	1.33 (1.09-1.63)	5.7×10 ⁻³	1.50 (1.18-1.91)	1.0×10 ⁻³	0.098	63.4
rs2188380 ^{**}	12	111386127	MYL2-CUX2	T/C	0.85	0.76	1.78 (1.52-2.08)	5.7×10 ⁻¹³	0.86	0.78	1.73 (1.48-2.02)	2.0×10 ⁻¹²	1.75 (1.57-1.96)	1.6×10 ⁻²³	0.81	0
rs9806234	15	74663033	CYP11A1-SEMA7A	G/A	0.62	0.55	1.34 (1.18-1.51)	3.1×10⁻⁵	0.58	0.58	1.02 (0.91-1.15)	0.70	1.17 (0.90-1.52)	0.24	1.9×10⁻³	89.7
rs931794	15	78826180	AGPHD1	A/G	0.67	0.60	1.33 (1.18-1.51)	6.5×10⁻⁵	0.64	0.64	1.00 (0.89-1.13)	0.97	1.16 (0.87-1.53)	0.31	1.3×10 ⁻³	90.4
rs13755	17	37223458	PLXDC1	A/G	0.17	0.13	1.47 (1.24-1.73)	8.3×10⁻ ⁶	0.14	0.16	0.87 (0.74-1.02)	0.088	1.13 (0.67-1.88)	0.65	1.2×10⁻⁵	94.8
rs242676	18	58754937	MC4R-CDH20	A/G	0.72	0.65	1.36 (1.19-1.55)	3.9×10⁻ ⁶	0.70	0.69	1.01 (0.89-1.14)	0.88	1.17 (0.88-1.57)	0.29	1.3×10⁻³	90.4

Supplementary Table S4 Summary of GWAS and replication study of 16 SNPs

Chr., chromosome; Freq., frequency of A1; OR, odds ratio; CI, confidence interval.

*dbSNP rs number. SNPs at genome-wide significance levels are marked with "***" and a suggestive SNP is marked with "***"

[†]SNP positions are based on NCBI human genome reference sequence Build 37.4.

[‡]A1 is a risk-associated allele and A2 is a non-risk-associated allele.

[§]945 gout cases and 1213 controls.

^{II}1048 gout cases and 1334 controls.

⁺⁺The inverse-variance fixed-effects model meta-analysis was used for estimating summary OR. If heterogeneity was present by the statistical test (p_{het} < 0.05) or measure (l² > 50%), we performed DerSimonian and Laird random-effects model meta-analysis.

^{‡‡}p values smaller than 3.1 × 10⁻³ (adjusting for 16 tests with Bonferroni correction) in replication study are shown in bold letters. p values smaller than 5.0 × 10⁻⁸ in meta-analyses are shown in bold letters.

Supplementary Table S5 Power of the present study design

	Minor allele frequency of control						
Odds ratio	0.2	0.3	0.4				
2.0	99.5%	100.0%	100.0%				
1.8	92.7%	98.2%	99.0%				
1.6	57.1%	76.9%	83.0%				
1.4	8.7%	18.6%	24.5%				

The significance thresholds are calculated to be α = 1.0 × 10⁻⁵ and 3.1 × 10⁻³ (= 0.05/16) for GWAS and replication stages, respectively.

Supplementary Table S6A Imputation analysis near *MYL2-CUX2* locus

ouppionient	iny rubic	SUA Imputatio	in analysis near		10003
SNP [*]	Chr.	Position $(bp)^{\dagger}$	Gene	p Value	r ^{2‡}
rs12227162	12	111367244	MYL2-CUX2	4.4 × 10 ⁻¹⁴	0.92
rs149607519	12	111389437	MYL2-CUX2	6.3 × 10 ⁻¹⁴	0.99
rs17550549	12	111357471	MYL2	6.4 × 10 ⁻¹⁴	0.61
rs10849917	12	111357074	MYL2	6.8 × 10 ⁻¹⁴	0.60
rs2188380	12	111386127	MYL2-CUX2	7.2 × 10 ⁻¹⁴	-
rs7488411	12	111356598	MYL2	7.2 × 10 ⁻¹⁴	0.60
rs12311834	12	111354700	MYL2	7.7 × 10 ⁻¹⁴	0.56
rs10849916	12	111355206	MYL2	7.7 × 10 ⁻¹⁴	0.58
rs3782888	12	111355606	MYL2	8.3 × 10 ⁻¹⁴	0.60
rs117607209	12	111354703	MYL2	8.9 × 10 ⁻¹⁴	0.59
rs61943010	12	111354623	MYL2	1.1 × 10 ⁻¹³	0.60
rs11065773	12	111355100	MYL2	1.1 × 10 ⁻¹³	0.60
rs61943000	12	111354106	MYL2	1.3 × 10 ⁻¹³	0.60
rs61942999	12	111353762	MYL2	1.3 × 10 ⁻¹³	0.60
rs2301610	12	111353556	MYL2	1.3 × 10 ⁻¹³	0.60
rs11065747	12	111326666	CCDC63	1.3 × 10 ⁻¹³	0.56
rs2078847	12	111352478	MYL2	1.3 × 10 ⁻¹³	0.60
rs11065770	12	111351937	MYL2	1.3 × 10 ⁻¹³	0.60
rs916164	12	111351599	MYL2	1.4 × 10 ⁻¹³	0.60
rs11065769	12	111351439	MYL2	1.4 × 10 ⁻¹³	0.60
rs2071629	12	111351186	MYL2	1.4 × 10 ⁻¹³	0.60
rs3858704	12	111705893	CUX2	3.9 × 10 ⁻¹³	0.50
rs4766566	12	111706877	CUX2	4.0 × 10 ⁻¹³	0.50
rs11065746	12	111326655	CCDC63	5.1 × 10 ⁻¹³	0.60
rs3825389	12	111350771	MYL2	5.4 × 10 ⁻¹³	0.60
rs3782889	12	111350655	MYL2	5.5 × 10 ⁻¹³	0.60
rs3782890	12	111350531	MYL2	5.5 × 10 ⁻¹³	0.60
rs3782891	12	111350457	MYL2	5.6 × 10 ⁻¹³	0.60
rs11065766	12	111349849	MYL2	5.6 × 10 ⁻¹³	0.60
rs12231049	12	111349223	MYL2	5.8 × 10 ⁻¹³	0.60
rs117139109	12	111346382	CCDC63	5.9 × 10 ⁻¹³	0.59
rs11065750	12	111331016	CCDC63	7.2 × 10 ⁻¹³	0.60
rs11065749	12	111329227	CCDC63	7.2 × 10 ⁻¹³	0.60
rs10774609	12	111325265	CCDC63	9.3 × 10 ⁻¹³	0.59
rs11065751	12	111331156	CCDC63	1.0 × 10 ⁻¹²	0.60
rs10849914	12	111325437	CCDC63	1.4 × 10 ⁻¹²	0.59
rs78900292	12	111341921	CCDC63	1.5 × 10 ⁻¹²	0.59

				- 40	
rs117528052	12	111341920	CCDC63	1.5 × 10 ⁻¹²	0.59
rs11065752	12	111331165	CCDC63	1.6 × 10 ⁻¹²	0.60
rs11065753	12	111331685	CCDC63	1.6 × 10 ⁻¹²	0.60
rs7312231	12	111333224	CCDC63	1.6 × 10 ⁻¹²	0.60
rs10849915	12	111333622	CCDC63	1.6 × 10 ⁻¹²	0.60
rs1858881	12	111334117	CCDC63	1.7 × 10 ⁻¹²	0.60
rs6489821	12	111334318	CCDC63	1.7 × 10 ⁻¹²	0.60
rs2339598	12	111341925	CCDC63	1.8 × 10 ⁻¹²	0.58
rs11065758	12	111341026	CCDC63	1.8 × 10 ⁻¹²	0.58
rs6489822	12	111334375	CCDC63	1.8 × 10 ⁻¹²	0.60
rs35856328	12	111335360	CCDC63	1.8 × 10 ⁻¹²	0.60
rs11065764	12	111343443	CCDC63	1.8 × 10 ⁻¹²	0.60
rs11065763	12	111343000	CCDC63	1.9 × 10 ⁻¹²	0.60
rs11065762	12	111342722	CCDC63	1.9 × 10 ⁻¹²	0.60
rs2283353	12	111342017	CCDC63	1.9 × 10 ⁻¹²	0.60
rs146280669	12	111335756	CCDC63	2.0 × 10 ⁻¹²	0.60
rs7303257	12	111324923	CCDC63	2.1 × 10 ⁻¹²	0.60
rs11610779	12	111336560	CCDC63	2.2 × 10 ⁻¹²	0.60
rs7305904	12	111337891	CCDC63	2.3 × 10 ⁻¹²	0.60
rs11065756	12	111338794	CCDC63	2.4 × 10 ⁻¹²	0.60
rs11065757	12	111340788	CCDC63	2.4 × 10 ⁻¹²	0.60
rs10774610	12	111340243	CCDC63	2.5 × 10 ⁻¹²	0.60
rs2339717	12	111696528	CUX2	2.9 × 10 ⁻¹²	0.48
rs6490029	12	111698457	CUX2	3.1 × 10 ⁻¹²	0.48
rs916682	12	111699146	CUX2	5.1 × 10 ⁻¹²	0.49
rs11065836	12	111671076	CUX2	4.4 × 10 ⁻⁹	0.23
rs2106410	12	111631946	CUX2	1.4 × 10 ⁻⁷	0.19
rs4766552	12	111631765	CUX2	1.4 × 10 ⁻⁷	0.25
rs4766553	12	111634281	CUX2	5.5 × 10 ⁻⁷	0.19
rs56119815	12	111665521	CUX2	1.4 × 10 ⁻⁶	0.14
rs3809286	12	111664404	CUX2	1.7 × 10⁻ ⁶	0.11
rs4766558	12	111664061	CUX2	1.9 × 10 ⁻⁶	0.11
rs7969686	12	111665388	CUX2	2.4 × 10 ⁻⁶	0.11
rs7962233	12	111655513	CUX2	2.7 × 10 ⁻⁶	0.14
rs10774615	12	111659096	CUX2	2.8 × 10 ⁻⁶	0.11
rs4766556	12	111659074	CUX2	2.9 × 10 ⁻⁶	0.11
rs3825398	12	111651949	CUX2	2.9 × 10 ⁻⁶	0.12
rs10083213	12	111654363	CUX2	2.9 × 10 ⁻⁶	0.11
rs11065832	12	111662984	CUX2	3.5 × 10⁻ ⁶	0.11

rs10082818	12	111663177	CUX2	3.5 × 10 ⁻⁶	0.11
rs7971185	12	111660599	CUX2	3.8 × 10 ⁻⁶	0.13
rs2339715	12	111657745	CUX2	4.2 × 10 ⁻⁶	0.13
rs4766559	12	111666984	CUX2	4.6 × 10 ⁻⁶	0.15
rs3809288	12	111652522	CUX2	4.8 × 10 ⁻⁶	0.11
rs10744769	12	111650780	CUX2	5.5 × 10 ⁻⁶	0.11
rs2339716	12	111680885	CUX2	6.5 × 10 ⁻⁶	0.12
rs3925618	12	111649686	CUX2	7.0 × 10 ⁻⁶	0.14
rs1034603	12	111649344	CUX2	7.3 × 10 ⁻⁶	0.14
rs1034602	12	111649179	CUX2	7.4 × 10 ⁻⁶	0.14
rs4766557	12	111664044	CUX2	8.4 × 10 ⁻⁶	0.12
rs10774614	12	111650339	CUX2	8.5 × 10 ⁻⁶	0.13
rs6490037	12	111713671	CUX2	9.9 × 10 ⁻⁶	0.17

Chr., chromosome.

^{*}dbSNP rs number.

[†]SNP positions are based on NCBI human genome reference sequence Build 37.4.

 $^{\ddagger}\text{r}^{2}\text{ indicates the pairwise linkage disequilibrium with rs2188380.}$

Supplementary Table S6B Imputation analysis near GCKR locus

SNP [*]	Chr.	Position (bp) [†]	Gene	p Value	r ^{2‡}
rs1260326	2	27730940	GCKR	1.7 × 10 ⁻⁷	-
rs814295	2	27743215	GCKR	1.1 × 10 ⁻⁶	0.48
rs6744393	2	27750139	GCKR	1.1 × 10 ⁻⁶	0.48
rs74928908	2	27744089	GCKR	1.2 × 10 ⁻⁶	0.47
rs780092	2	27743154	GCKR	1.2 × 10 ⁻⁶	0.47
rs78680773	2	27751562	GCKR	1.2 × 10 ⁻⁶	0.45
rs3817588	2	27731212	GCKR	1.4 × 10 ⁻⁶	0.50
rs780093	2	27742603	GCKR	2.1 × 10 ⁻⁶	0.88
rs1313566	2	27748904	GCKR	2.3 × 10 ⁻⁶	0.88
rs182700961	2	27781772	GCKR-C2orf16	3.2 × 10 ⁻⁶	0.22
rs780094	2	27741237	GCKR	3.2 × 10 ⁻⁶	0.92
rs6547692	2	27734972	GCKR	3.5 × 10 ⁻⁶	0.93
rs62131879	2	27755112	GCKR	3.5 × 10⁻ ⁶	0.23
rs10181342	2	27757343	GCKR	3.6 × 10 ⁻⁶	0.23
rs116443177	2	27764122	GCKR	3.6 × 10 ⁻⁶	0.23
rs62131881	2	27764781	GCKR	3.7 × 10⁻ ⁶	0.23
rs62131882	2	27765480	GCKR	3.7 × 10 ⁻⁶	0.23
rs62141278	2	27768381	GCKR	3.8 × 10 ⁻⁶	0.23
rs780096	2	27741072	GCKR	3.8 × 10⁻ ⁶	0.92

rs780095	2	27741105	GCKR	3.8 × 10 ⁻⁶	0.92
rs62141279	2	27771415	GCKR-C2orf16	3.9 × 10 ⁻⁶	0.24
rs62141281	2	27777651	GCKR-C2orf16	4.1 × 10 ⁻⁶	0.23
rs2384627	2	27774449	GCKR-C2orf16	4.2 × 10 ⁻⁶	0.23
rs6751087	2	27778016	GCKR-C2orf16	4.2 × 10 ⁻⁶	0.23
rs1881396	2	27844601	ZNF512	4.8 × 10 ⁻⁶	0.24
rs13405762	2	27834615	ZNF512	5.3 × 10 ⁻⁶	0.23
rs78170284	2	27835082	ZNF512	5.4 × 10 ⁻⁶	0.23
rs1881395	2	27838549	ZNF512	5.4 × 10 ⁻⁶	0.23
rs7571558	2	27839832	ZNF512	5.4 × 10 ⁻⁶	0.23
rs62138971	2	27840754	ZNF512	5.4 × 10 ⁻⁶	0.23
rs6547735	2	27831607	ZNF512	5.7 × 10 ⁻⁶	0.23
rs6719960	2	27830067	ZNF512	5.7 × 10 ⁻⁶	0.23
rs2141372	2	27827196	ZNF512	5.7 × 10 ⁻⁶	0.23
rs62138968	2	27824485	ZNF512	5.7 × 10 ⁻⁶	0.23
rs56725354	2	27824168	ZNF512	5.7 × 10 ⁻⁶	0.23
rs1919129	2	27818721	ZNF512	5.8 × 10 ⁻⁶	0.23
rs62138966	2	27819172	ZNF512	5.8 × 10 ⁻⁶	0.23
rs62138965	2	27816593	ZNF512	5.8 × 10 ⁻⁶	0.23
rs76013440	2	27816315	ZNF512	5.8 × 10 ⁻⁶	0.23
rs1881397	2	27832285	ZNF512	5.9 × 10 ⁻⁶	0.23
rs60854669	2	27786929	GCKR-C2orf16	6.1 × 10 ⁻⁶	0.23
rs965813	2	27789861	GCKR-C2orf16	6.2 × 10 ⁻⁶	0.23
rs59876138	2	27792323	GCKR-C2orf16	6.2 × 10 ⁻⁶	0.23
rs6704596	2	27796927	GCKR-C2orf16	6.3 × 10 ⁻⁶	0.23
rs62138964	2	27814438	ZNF512	6.3 × 10 ⁻⁶	0.23
rs62138963	2	27814374	ZNF512	6.3 × 10 ⁻⁶	0.23
rs3811644	2	27802805	C2orf16	6.3 × 10 ⁻⁶	0.23
rs6734059	2	27808154	ZNF512	6.5 × 10 ⁻⁶	0.23
rs62141291	2	27784034	GCKR-C2orf16	6.6 × 10 ⁻⁶	0.23
rs62141292	2	27784300	GCKR-C2orf16	6.6 × 10 ⁻⁶	0.23
rs62141290	2	27783392	GCKR-C2orf16	9.2 × 10 ⁻⁶	0.22

Chr., chromosome.

^{*}dbSNP rs number.

 $^{\rm t}{\rm SNP}$ positions are based on NCBI human genome reference sequence Build 37.4.

 $^{\ensuremath{\text{tr}}\xspace^2}$ indicates the pairwise linkage disequilibrium with rs1260326.

Supplementary Table S6C Imputation analysis near CNIH-2 locus

SNP [*]	Chr.	Position (bp) [†]	Gene	p Value	r ^{2‡}
rs524859	11	66041079	RAB1B	3.9 × 10⁻ ⁶	1.00
rs4073582	11	66050712	CNIH-2	4.8 × 10 ⁻⁶	-
rs801742	11	65914766	PACS1	6.9 × 10 ⁻⁶	0.96

Chr., chromosome.

^{*}dbSNP rs number.

[†]SNP positions are based on NCBI human genome reference sequence Build 37.4.

 $^{t}r^{2}$ indicates the pairwise linkage disequilibrium with rs4073582.

Supplementary Table S6D Imputation analysis near MAP3K11 locus

SNP	Chr.	Position $(bp)^{\dagger}$	Gene	p Value	r ^{2‡}
rs11227230	11	65356674	EHBP1L1	1.2 × 10 ⁻⁶	0.96
rs1151503	11	65357697	EHBP1L1	1.3 × 10 ⁻⁶	0.96
rs4326800	11	65367253	MAP3K11	1.9 × 10 ⁻⁶	1.00
rs10791821	11	65368323	MAP3K11	1.9 × 10 ⁻⁶	-
rs34278912	11	65360243	KCNK7	2.0 × 10 ⁻⁶	0.91

Chr., chromosome.

^{*}dbSNP rs number.

[†]SNP positions are based on NCBI human genome reference sequence Build 37.4.

 $^{+}r^{2}$ indicates the pairwise linkage disequilibrium with rs10791821.

Supplementary Table S7A Univariate and multivariate logistic regression including three SNPs of ABCG2

	Univaria	ate	Multivariate			
SNP*	OR (95% CI)	p Value [†]		OR (95% CI)	$p Value^{\dagger}$	
rs2728125	2.06 (1.84 - 2.30)	2.3 × 10 ⁻³⁶		0.85 (0.68 - 1.08)	0.19	
rs72552713	2.18 (1.63 - 2.92)	1.4 × 10 ⁻⁷		2.95 (2.18 - 3.98)	1.9 × 10 ⁻¹²	
rs2231142	2.35 (2.11 - 2.63)	2.9 × 10 ⁻⁵¹		2.83 (2.24 - 3.57)	1.8 × 10 ⁻¹⁸	

OR, odds ratio; CI, confidence interval.

*dbSNP rs number.

[†]We analyzed 1993 cases and 1334 controls whose genotype data for rs72552713 and rs223114 were available.

Supplementary Table S7B Association analysis of gout with *ABCG2* dysfunctional missense variants

					F	req.	OR (95% CI) ^d	p Value [§]
SNP*	Chr.	Position $(bp)^{\dagger}$	Amino Acid change	A1/A2 [‡]	Cases	Controls	OR (95% CI)	p value
rs72552713	4	89052957	Gln126Ter	T/C	0.049	0.023	2.86 (2.12 - 3.85)	4.4 × 10 ⁻¹²
rs2231142	4	89052323	GIn141Lys	A/C	0.46	0.27	2.47 (2.20 - 2.76)	1.6 × 10 ⁻⁵⁵

Chr., chromosome; Freq., frequency of A1; OR, odds ratio; CI, confidence interval.

*dbSNP rs number.

[†]SNP positions are based on NCBI human genome reference sequence Build 37.4.

[‡]A1 is a risk-associated allele and A2 is a non-risk-associated allele.

[§]We analyzed 1993 cases and 1334 controls whose genotype data for these two SNPs were available. Logistic regression analyses were performed using a multivariate model including two SNPs, which located on different haplotypes.

Risk allele No.	Cases	Controls	OR (95% CI) ^a	p Value*
4 or less	45	134	Reference	
5	148	246	1.79 (1.21 - 2.66)	3.5 × 10 ⁻³
6	377	355	3.16 (2.19 - 4.57)	2.3 × 10 ⁻¹⁰
7	548	320	5.10 (3.54 - 7.34)	9.7 × 10 ⁻²¹
8	507	149	10.1 (6.90 - 14.9)	5.3 × 10 ⁻³⁹
9 or more	265	46	18.6 (11.8 - 29.2)	3.6 × 10 ⁻⁴⁵

Supplementary Table S8 Magnitude of gout risk associated with the number of risk alleles

OR, odds ratio; CI, confidence interval.

*We analyzed 1937 cases and 1254 controls whose genotype data for the following six SNPs were available: rs3775948 of *SLC2A9*, rs2188380 of *MYL2-CUX2*, rs1260326 of *GCKR*, rs4073582 of *CNIH-2*, rs72552713 and rs2231142 of *ABCG2*.

			SUA [†]			FE _{UA} ‡			UUE [‡]				
			95%	6 CI			95%	% CI			95%	6 CI	
SNP*	Gene	Coef.	LL	UL	p Value [§]	Coef.	LL	UL	p Value [§]	Coef.	LL	UL	p Value [§]
rs3775948	SLC2A9	0.166	0.076	0.256	3.1 × 10⁻⁴	-0.260	-0.368	-0.152	2.6 × 10 ⁻⁶	-0.809	-1.482	-0.136	0.018
rs2188380	MYL2-CUX2	0.074	-0.048	0.196	0.23	-0.141	-0.288	0.006	0.06	0.480	-0.437	1.396	0.30
rs1260326	GCKR	0.063	-0.019	0.146	0.13	-0.064	-0.164	0.034	0.20	0.127	-0.490	0.745	0.69
rs4073582	CNIH-2	-0.008	-0.187	0.171	0.93	-0.030	-0.245	0.184	0.78	0.224	-1.115	1.562	0.74
rs10791821	MAP3K11	0.032	-0.145	0.208	0.72	-0.076	-0.288	0.135	0.48	-0.792	-2.109	0.525	0.24
rs72552713	ABCG2	0.402	0.210	0.594	4.3 × 10 ⁻⁵	0.348	0.116	0.579	3.3 × 10 ⁻³	2.780	1.338	4.222	1.6 × 10⁻⁴
rs2231142	ABCG2	0.183	0.098	0.268	2.6 × 10⁻⁵	0.244	0.142	0.346	3.2 × 10 ⁻⁶	1.862	1.224	2.500	1.2 × 10 ⁻⁸

Supplementary Table S9 Association analysis between seven SNPs and three uric acid-related parameters

SUA, serum uric acid (unit: mg/dl); FE_{UA}, fractional excretion of urate clearance (unit: %); UUE, urinary urate excretion (unit: mg/hr/1.73m²); Coef., regression coefficient; CI, confidence interval; LL, lower limit;

UL, upper limit. We performed multivariate linear regression analyses, in which all 7 SNPs, alcohol drinking and BMI were included in the model.

*dbSNP rs number.

[†]Among 1657 gout patients with records of SUA, 1616 patients with complete information on all the explanatory variables were analyzed.

[‡]Among 1613 gout patients with records of FE_{UA} and UUE, 1574 patients with complete information on all the explanatory variables were analyzed.

 $^{\$}\text{p}$ values smaller than 0.05 are shown in bold letters.

Supplementary Table S10 Linkage disequilibrium among rs4073582 of *CNIH-2*, rs10791821 of *MAP3K11*, and rs504915 of *NRXN2*

		r ²					
		rs4073582 (CNIH-2)	rs10791821 (<i>MAP3K11</i>)	rs504915 (<i>NRXN2</i>)			
	rs4073582 (CNIH-2)		0.010	0.006			
D'	rs10791821 (<i>MAP3K11</i>)	0.124		0.189			
	rs504915 (<i>NRXN2</i>)	0.728	0.649				

Supplementary Table S11 Multivariate logistic regression analysis adjusted with rs504915 of *NRXN2*

		Univariate		Multivariate [†]		
SNP*	Gene	p Value	OR (95% CI)	p Value	OR (95% CI)	
rs4073582	CNIH-2	1.6×10 ⁻⁴	1.55 (1.23-1.96)	3.3×10 ⁻⁴	1.55 (1.22-1.96)	
rs10791821	MAP3K11	3.4×10 ⁻³	1.41 (1.12-1.77)	2.4×10 ⁻³	1.44 (1.14-1.82)	

OR, odds ratio; CI, confidence interval.

*dbSNP rs number.

[†]We performed multivariate logistic regression analyses using replication stage samples. These data were adjusted with rs504915 of *NRXN2*.

Supplementary Methods

Genotyping and quality control

At GWAS stage, the data sets were filtered individually on the basis of single nucleotide polymorphism (SNP) genotype missing call rates (>1%), and the Hardy-Weinberg equilibrium (HWE) in controls $(p<1.0\times10^{-6})$. We confirmed that all the subjects showed high genotype call rates (>98%). Pairwise identity by state was evaluated in order to identify pairs of individuals with cryptic relatedness. We confirmed that there was no pair showing cryptic relatedness greater than expected for second-degree relatives. We performed principal component analysis including our GWAS data set together with HapMap phase II samples.¹² As a result, we excluded one gout patient as a population outlier who was presumed to be of mixed origin (East Asian and European) (supplementary figure S2). Finally, 570 442 SNPs passed filters for 945 cases and 1213 controls.

One hundred twenty-three SNPs passing the significance threshold at $p<1.0\times10^{-5}$ in the GWAS stage were used for the subsequent analyses. For closely located SNPs, we detected top-ranked SNPs and then we examined the pairwise linkage disequilibrium (LD) between SNP showing the most significant association and other SNPs. For each novel risk locus, we confirmed that all of the SNPs showing associations at $p<1.0\times10^{-5}$ were in moderate to strong LD ($r^2>0.3$) with SNP showing the most significant association. Furthermore, these SNPs were no longer significant at $p<1.0\times10^{-5}$ after adjusting for the most significantly associated SNP in each locus by the logistic regression analyses. Finally, we selected 16 SNPs for replication study. We genotyped these SNPs and confirmed that all the 16 SNPs were of high call rate (>98%) and did not show significant deviation from HWE in controls (p>0.05).

Statistical analyses for GWAS

We conducted an association analysis using a 2×2 contingency table based on the allele frequency. For each of the filtered SNPs, p value of association was assessed by χ^2 test, and the odds ratio (OR) and 95% confidence interval (95% CI) were calculated. The quantile-quantile plot and the genomic inflation factor (λ) were used to assess the presence of systematic bias in the test statistics due to potential population stratification. After excluding SNPs within 500 kb from the SNPs reaching a genome-wide significance threshold (p<5.0×10⁻⁸), the λ was 1.054, indicating a subtle inflation of p values (supplementary figure S3).

Imputation

For the imputation, the 1000 genomes reference panel (the East Asian population) was obtained from the phase 1 release (16 March 2012, http://www.1000genomes.org/announcements/updated-integrated-phase-1 -release-calls-2012-03-16), and we ran a logistic regression analysis based on imputation dosages via MACH2DAT.³ We included all SNPs with estimated $r^2>0.9$ and minor allele frequency ≥ 0.01 for analysis.

Analysis of the two dysfunctional SNPs of ABCG2

The genotyping of the two *ABCG2* SNPs (rs72552713 and rs2231142) was performed with an allelic discrimination assay (Custom TaqMan Assay, Applied Biosystems) with a LightCycler 480 (Roche

Diagnostics).⁴ All the logistic regression analyses were performed with a software SPSS v.22.0J (IBM Japan Inc.). A software R (version 3.0.2) (http://www.r-project.org/) with GenABEL software package was used for LD analysis.

Estimation of variance explained by identified SNPs

For each variant identified in our GWAS, we calculated percent of the variance explained. We used the liability threshold model in quantitative genetics.⁵ In this model, it is assumed that liability of a binary disease trait on unobserved continuous scale is assumed to be normally distributed with a mean of zero and variance of one, and individuals whose liabilities surpass a threshold develop the disease. To calculate the percent variance explained, we assumed that the prevalence of gout was 1.1% based on the estimation in Japanese male population.^{4 6} We assumed that SNP effects were additive on the logistic scale. Under the rare disease assumption, we approximated the relative risk by the odds ratio obtained in this study. For the identified SNPs, we used the allele frequencies in the East Asian population in the 1000 Genomes Project.⁷

Subtype analysis

We investigated the magnitude of associations between the identified SNPs and the types of gout by examining type-specific ORs and the case-subtype heterogeneity test. Fractional excretion of urate clearance (FE_{UA}) and urinary urate excretion (UUE) were measured for each patient as described previously,⁸ and all cases were classified based on the criteria (supplementary figure S1). To estimate gout type-specific ORs, the frequency of a SNP in each type was compared with the frequency in controls using a logistic regression. To assess whether the estimated type-specific ORs were significantly different, the frequencies of the SNP were compared between types by dichotomous logistic regression (the case-subtype heterogeneity test).⁹ For these subtype analyses, the effects of alcohol drinking, body mass index (BMI), and all the identified SNPs were considered in the model. When evaluating the effects of risk allele of SNP on clinical parameters (FE_{UA} and UUE), a linear regression analysis was performed by defining the SNP genotype predictor variable *x* as the number of risk alleles associated with gout risk. All the logistic and linear regression analyses were performed using the STATA version 11.0.

References for Supplementary Methods

- 1 Patterson N, Price AL, Reich D. Population structure and eigenanalysis. *PLoS Genet* 2006;2:e190.
- 2 Price AL, Patterson NJ, Plenge RM, *et al.* Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet* 2006;38:904-9.
- 3 Li Y, Willer C, Sanna S, et al. Genotype imputation. Annu Rev Genomics Hum Genet 2009;10:387-406.
- 4 Matsuo H, Takada T, Ichida K, *et al.* Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. *Sci Transl Med* 2009;1:5ra11.
- 5 Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. 4 ed. Harlow, Essex, UK:

Longmans Green, 1996.

- 6 Hakoda M. Epidemiology of hyperuricemia and gout in Japan. *Nippon Rinsho (in Japanese)* 2008;66:647-52.
- 7 Abecasis GR, Altshuler D, Auton A, *et al.* A map of human genome variation from population-scale sequencing. *Nature* 2010;467:1061-73.
- 8 Ichida K, Matsuo H, Takada T, *et al.* Decreased extra-renal urate excretion is a common cause of hyperuricemia. *Nat Commun* 2012;3:764.
- 9 Nakaoka H, Takahashi T, Akiyama K, et al. Differential effects of chromosome 9p21 variation on subphenotypes of intracranial aneurysm: site distribution. Stroke 2010;41:1593-8.