

Figure S1. H&E staining of a normal non-arthritic and KxB/N arthritic knee joint

Mice were given an i.p. injection of 50 μ l at day 0 and day 2 (50+50 μ l) K/BxN serum. Knees of naïve and 50+50 μ l K/BxN serum group, taken at day 20 endpoint were decalcified and paraffin embedded. Sections were stained by H&E. Representative images are shown here. Scale bars; 60 μ M

Table S1

Table S1. Arthritic disease incidence following low volume K/BxN serum administration

Time (days)	50+50 μl K/BxN serum	200 μl K/BxN serum
0	0% (0/8)	0% (0/8)
6	100% (8/8)	85.7% (6/7)
10	75% (3/4)	66.6% (2/3)
20	0% (0/4)	0% (0/3)

Data report the number of mice with a severe arthritic score, taking a threshold ≥ 8 . Mice were given an i.p. injection of 50 µl at day 0 and day 2 (50+50 µl)) or 200 µl at day 0 of K/BxN serum.

Table S2

Gene of Interest	Cycle threshold (Ct)	Difference normalised to <i>Gapdh</i> (ΔCt)	Difference normalised to <i>Rpl32</i> (ΔCt)
Gapdh	18.6 ± 0.32		
Rpl32	18.4 ± 0.16		
Fpr1	30.7 ± 0.69	12.1 ± 0.73	12.3 ± 0.60
Fpr2	30.4 ± 0.68	11.8 ± 0.77	12.0 ± 0.57
Anxa1	21.0 ± 0.15	$\textbf{2.4}\pm\textbf{0.42}$	$\textbf{2.6} \pm \textbf{0.05}$

Table S2. Expression of elements of the AnxA1 pathway in naïve ankle joints by quantitative PCR (data normalised to housekeeping genes *Gapdh* or *Rpl32*)

Data report the gene expression of elements of the AnxA1 pathway. Naïve mice were culled and quantitative real-time PCR was performed on cDNA from left ankle joints. Data are mean \pm SE of 4 mice per group. Ct values were normalised to endogenous *Gapdh* and *RpI32*.

Figure S2. Inhibition of K/BxN arthritis by dexamethasone

Data report percentage disease inhibition in Dex groups relative to vehicle control at day 6. Mice were given an i.p. injection of 50 μ l at day 0 and day 2 (50+50 μ l)) of K/BxN serum and then received vehicle or Dex (3, 10 or 30 μ g i.p. daily).

Figure S3 Dexamethasone attenuates K/BxN arthritis in AnxA1^{+/+} but not AnxA1^{-/-} mice (data normalised to housekeeping gene *Rpl32*)

Mice were given an i.p. injection of 50 µl at day 0 and day 2 (50+50 µl) K/BxN serum and then received vehicle or Dex (10 µg i.p. daily). Quantitative real-time PCR was performed on cDNA from left ankle joints of mice from each experimental group (Day 10); pro-inflammatory genes were analysed with all Ct values normalised to endogenous *Rpl32* (4 mice per group). RQ values were calculated using $2^{-(\Delta\Delta Ct)}$ and data shown here as mean % gene inhibition by Dex relative to vehicle control groups ± SE. Naïve joints were set as the calibrator samples. *p<0.05 *vs.* respective vehicle control (Student's *t* test).

Table S3

Time (days)	AnxA1 ^{+/+} + Vehicle control	AnxA1 ^{+/+} + Dexamethasone	AnxA1 ^{-/-} + Vehicle control	AnxA1 ^{-/-} + Dexamethasone
0	0% (0/3)	0% (0/4)	0% (0/4)	0% (0/4)
6	66.7% (2/3)	0% (0/4)	75% (3/4)	75% (3/4)
10	66.7% (2/3)	0% (0/4)	75% (3/4)	25% (1/4)

Table S3. Arthritic disease incidence in AnxA1^{+/+} and AnxA1^{-/-} mice treated with Dex

Data report the number of mice with a severe arthritic score, taking a threshold ≥ 8 . AnxA1^{+/+} and AnxA1^{-/-} mice were given an i.p. injection of 50 µl at day 0 and day 2 (50+50 µl) and then received vehicle or Dex (10 µg i.p. daily).

Figure S4. Profile of *Anxa1*, *Fpr1* and *Fpr2* gene product expression in ankle joints of AnxA1^{+/+} and AnxA1^{-/-} mice treated with Dex mice (data normalised to housekeeping gene *Rpl32*)

AnxA1^{+/+} and AnxA1^{-/-} mice were given an i.p. injection of 50 µl at day 0 and day 2 (50+50 µl) K/BxN serum and then received vehicle or Dex (10 µg i.p. daily). Quantitative real-time PCR was performed on cDNA from left ankle joints of mice from each experimental group (Day 10); The *Anxa1*, *Fpr1* and *Fpr2* genes were analysed with all Ct values normalised to endogenous *Rpl32* (4 mice per group). Mean RQ values \pm SE were calculated using 2^{-($\Delta\Delta$ Ct)} method. Naïve joints were set as the calibrator samples. *p<0.05 *vs.* respective vehicle control (Student's *t* test). *p<0.05 *vs.* naïve; [§]p<0.05 *vs.* appropriate vehicle control; #p<0.05 *vs.* AnxA1^{+/+} group (Student's *t* test).

Figure S5. Profile of *Pr3* gene product expression in ankle joints of AnxA1^{+/+} mice over time-course of K/BxN time-course (data normalised to housekeeping gene *Rpl32*)

AnxA1^{+/+} mice were given an i.p. injection of 50 μ l at day 0 and day 2 (50+50 μ l) K/BxN serum. Quantitative real-time PCR was performed on cDNA from left ankle joints of mice at day 0 (naive), day 6 and day 10; the *Pr3* gene was analysed with all Ct values normalised to endogenous *Rpl32* (6 mice per group). Mean RQ values ± SE were calculated using 2^{-($\Delta\Delta$ Ct)} method. Naïve joints were set as the calibrator samples.

Figure S6. SuperAnxA1 attenuates pro-inflammatory mediators in K/BxN arthritic ankle joints

Mice were given an i.p. injection of 50 µl at day 0 and day 2 (50+50 µl) K/BxN serum and then received vehicle control or SuperAnxA1 (1 µg i.p. daily) (n=6 per group). Quantitative real-time PCR was performed on cDNA from left ankle joints of mice from each experimental group (Day 10); pro-inflammatory genes were analysed with all Ct values normalised to endogenous *Gapdh* (six mice per group). RQ values were calculated using $2^{-(\Delta\Delta Ct)}$ and data shown here as mean % gene inhibition by SuperAnxA1 relative to vehicle control group ± SE.