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ABSTRACT
Objectives We have previously shown that peroxisome
proliferator-activated receptor gamma (PPARγ), a
transcription factor, is essential for the normal growth
and development of cartilage. In the present study, we
created inducible cartilage-specific PPARγ knockout (KO)
mice and subjected these mice to the destabilisation of
medial meniscus (DMM) model of osteoarthritis (OA) to
elucidate the specific in vivo role of PPARγ in OA
pathophysiology. We further investigated the
downstream PPARγ signalling pathway responsible for
maintaining cartilage homeostasis.
Methods Inducible cartilage-specific PPARγ KO mice
were generated and subjected to DMM model of OA.
We also created inducible cartilage-specific PPARγ/
mammalian target for rapamycin (mTOR) double KO
mice to dissect the PPARγ signalling pathway in OA.
Results Compared with control mice, PPARγ KO mice
exhibit accelerated OA phenotype with increased
cartilage degradation, chondrocyte apoptosis, and the
overproduction of OA inflammatory/catabolic factors
associated with the increased expression of mTOR and
the suppression of key autophagy markers. In vitro
rescue experiments using PPARγ expression vector
reduced mTOR expression, increased expression of
autophagy markers and reduced the expression of OA
inflammatory/catabolic factors, thus reversing the
phenotype of PPARγ KO mice chondrocytes. To dissect
the in vivo role of mTOR pathway in PPARγ signalling,
we created and subjected PPARγ-mTOR double KO mice
to the OA model to see if the genetic deletion of mTOR
in PPARγ KO mice (double KO) can rescue the
accelerated OA phenotype observed in PPARγ KO mice.
Indeed, PPARγ-mTOR double KO mice exhibit significant
protection/reversal from OA phenotype.
Significance PPARγ maintains articular cartilage
homeostasis, in part, by regulating mTOR pathway.

INTRODUCTION
Osteoarthritis (OA) is among the most prevalent
chronic human health disorders, and the most
common form of arthritis. Typical characteristics of
OA include cartilage deterioration/damage, inflam-
mation, synovial fibrosis, subchondral bone remod-
elling and osteophyte formation.1–4 Chondrocytes
are essential for maintaining homeostasis as well as
integrity of the extracellular matrix (ECM) within

the articular cartilage. We are now beginning to
understand the mechanisms leading to altered car-
tilage homeostasis, accelerated chondrocyte cell
death and subsequent cartilage degeneration during
OA. We and others have recently reported that the
process of autophagy, a form of programmed cell
survival,5 is dysregulated during OA and may con-
tribute to the decreased chondroprotection and
degradation of the articular cartilage.6–10 Carames
et al.9 showed that autophagy is a protective mech-
anism in normal cartilage, and its aging-related loss
is associated with cell death and OA. We have also
shown that during OA, excessive mammalian target
for rapamycin (mTOR) (major negative regulator
of autophagy) signalling and the subsequent sup-
pression of autophagy may contribute to cartilage
degradation.6 The genetic deficiency of mTOR and
treatment with rapamycin (mTOR inhibitor) has
been shown to reduce the severity of experimental
OA.6 10 However, endogenous mediators that
control mTOR signalling and ultimately chondro-
cyte cell death/survival mechanisms in the articular
cartilage are unknown. Identifying such endogen-
ous factors that control mTOR signalling and
articular cartilage homeostasis could lead to several
promising therapeutic strategies in OA.
PPARγ is a ligand-activated transcription factor ori-

ginally identified to play a key role in lipid homeosta-
sis. We and others have shown that PPARγ possesses
potent anti-inflammatory, anticatabolic and antifibro-
tic properties, and is a potential therapeutic target for
OA disease.11–18 Since global PPARγ knockout (KO)
mice are not viable,19 and cartilage-specific PPARγ
germ-line KO mice exhibit serious growth and devel-
opmental defects,13 14 we created inducible PPARγ
KO mice using Col2-rTACre-doxycycline system to
bypass the early developmental defects and to specif-
ically elucidate the in vivo role of PPARγ in OA
pathophysiology. This study first explored the role of
PPARγ in chondro-protection by determining the
effect of PPARγ deletion on mTOR and autophagy
signalling pathway and its subsequent effect on the
kinetics of OA progression and severity using mice
models of OA. In addition to cartilage-specific PPARγ
KO mice, we also generated inducible cartilage-
specific PPARγ-mTOR double KO mice to specifically
dissect the in vivo role of mTOR pathway in PPARγ
signalling during OA. This study is the first to show

Open Access
Scan to access more

free content

Vasheghani F, et al. Ann Rheum Dis 2015;74:569–578. doi:10.1136/annrheumdis-2014-205743 569

Basic and translational research
 on A

pril 27, 2024 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2014-205743 on 8 January 2015. D
ow

nloaded from
 

 on A
pril 27, 2024 by guest. P

rotected by copyright.
http://ard.bm

j.com
/

A
nn R

heum
 D

is: first published as 10.1136/annrheum
dis-2014-205743 on 8 January 2015. D

ow
nloaded from

 
 on A

pril 27, 2024 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2014-205743 on 8 January 2015. D
ow

nloaded from
 

http://dx.doi.org/10.1136/annrheumdis-2014-205743
http://dx.doi.org/10.1136/annrheumdis-2014-205743
http://dx.doi.org/10.1136/annrheumdis-2014-205743
http://crossmark.crossref.org/dialog/?doi=10.1136/annrheumdis-2014-205743&domain=pdf&date_stamp=2015-01-08
http://dx.doi.org/10.1136/annrheumdis-2014-206884
http://dx.doi.org/10.1136/annrheumdis-2014-206884
http://ard.bmj.com
http://www.eular.org/
http://ard.bmj.com/
http://ard.bmj.com/
http://ard.bmj.com/


that PPARγ is involved in maintaining articular cartilage homeosta-
sis, in part, through the modulation of mTOR signalling pathway.

METHODS
Generation of inducible cartilage-specific PPARγ KO mice
Inducible cartilage-specific PPARγ KO mice were generated by
mating mice containing a PPARγ gene flanked by LoxP sites
(C57BL/6-PPARγfl/fl, Jackson Laboratory) with C57BL/6
Col2-rt-TA-Cre transgenic mice20 (obtained from Dr Peter
Roughley, McGill University, Montreal, Canada) as we have pre-
viously reported.6 Six-week old PPARγfl/fl Cre mice were fed
doxycycline (Sigma) dissolved at 10 mg/mL in phosphate buf-
fered saline (PBS), pH 7.4, by oral gavage with the dose of
80 mL/g body weight for 7 days. rtTA requires interaction with
doxycycline (Sigma–Aldrich, Oakville, Ontario, Canada) to
permit interaction with the TetO sequence to drive Cre expres-
sion resulting in the inactivation of PPARγ floxed alleles to gener-
ate a cartilage-specific PPARγ KO mice. PPARγfl/fl Cre mice
without doxycycline (saline) treatment were used as control
mice. The routine genotyping of ear punch DNA followed by the
confirmation of loss of PPARγ expression in chondrocytes by
reverse transcription PCR (RT-PCR), western blotting and immu-
nohistochemistry was performed. All animal procedures and pro-
tocols were approved by the Comité Institutionnel de protection
des animaux (Institutional Animal Protection Committee) of the
University of Montreal Hospital Research Centre (CRCHUM).

Surgically induced OA mouse model
Control mice and PPARγ KO mice were subjected to surgically
induced OA by the destabilisation of the medial meniscus (DMM
model) in the right knee of 10-week-old animals as we have previ-
ously described.6 21 Briefly, after anaesthesia with isoflurance in O2,
the cranial attachment of the medial meniscus to the tibial plateau
(menisco-tibial ligament) of the right knee was transected. A sham
operation, consisting of an arthrotomy without the transaction of
the cranial menisco-tibial ligament, was also performed in the right
knee joint of separate control and PPARγ KOmice.

Histology
Freshly dissected mouse knee joints were fixed overnight in
TissuFix (Chaptec, Montreal, Quebec, Canada), decalcified for
1.5 h in RDO Rapid Decalcifier (Apex Engineering, Plainfield,
Illinois, USA), further fixed in TissuFix overnight, followed by
embedding in paraffin and sectioning. Sections (5 mm) were
deparaffinised in xylene followed by a graded series of alcohol
washes. Sections were stained with Safranin-O/Fast Green
(Sigma–Aldrich, Oakville, Ontario, Canada) according to the
manufacturer’s recommendations. Slides were evaluated by two
independent readers in a blinded fashion. To determine the
extent of cartilage degeneration, histological scoring method
issued by Osteoarthritis Research Society International (OARSI)
was used for analysis as previously described.6 22

Immunohistochemistry and TUNEL staining
Immunohistochemistry (IHC) studies were performed using spe-
cific antibodies for target genes. For IHC analysis, Dakocytomation
(Dako)-labelled streptavidin biotin+System horseradish peroxidase
kit was used following the manufacturer’s recommended protocol
as previously described.14 Five micrometer sections were deparaffi-
nised in xylene followed by a graded series of alcohol washes.
Endogenous peroxide was blocked for 5 min using 3% H2O2.
Non-specific IgG binding was blocked by incubating sections with
bovine serum albumin (BSA) (0.1%) in PBS for 1 h. Sections were
then incubated with primary antibody in a humidified chamber and

left overnight at 4°C. Next, sections were incubated with biotiny-
lated link for 30 min followed by streptavidin for 1 h. The diami-
nobenzidine tetrahydrochloride chromogen substrate solution was
then added until sufficient colour developed. Terminal deoxynu-
cleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)
assay was performed using ApopTag Plus Peroxidase In Situ
Apoptosis Detection Kit according to the manufacturer’s recom-
mendations (Millipore, Ontario, Canada). The quantification of
number of positive cells for each antigen was performed by the
determination of the total number of chondrocytes and the total
number that stained positive for the antigen. The final results were
expressed as the percentage of positive cells for the antigen.

Chondrocyte primary cell culture
The microdissection of mouse knee articular cartilage (medial
and lateral femoral condyle and tibial plateau) was performed
under a surgical microscope (Motic SMZ-168; Fisher Scientific
Canada, Ottawa, Ontario, Canada) to carefully dissect only
articular cartilage and avoid subchondral bone. Primary chon-
drocytes were prepared from the dissected articular cartilage by
enzymatic digestion as previously described.6 13 Briefly, dis-
sected articular cartilage was rinsed in PBS, and incubated at
37°C for 15 min in trypsin-ethylenediaminetetraacetic acid fol-
lowed by digestion with 2 mg/mL collagenase at 37°C for 2 h in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10%
fetal bovine serum (FBS), 100 U/mL penicillin, and 100 mg/mL
streptomycin under an atmosphere of 5% CO2. The cell suspen-
sion was filtered through a 70 -mm cell strainer (Falcon, Fort
Worth, Texas, USA), washed, counted and plated with DMEM
containing 10% FBS, 100 U/mL penicillin, and 100 mg/mL
streptomycin under an atmosphere of 5% CO2. At confluence,
the cells were detached and plated at a density of 2×105 cells/
well in six-well plates for experiments. Only first-passage cells
were used for the experiments.

Transfection
Transient transfection experiments were performed using the
Transfectine TMLipid Reagent according to the manufacturer’s
recommended protocol (Biorad, Mississauga, Canada). Briefly,
chondrocytes were seeded 24 h prior to transfection at a density
of 2×105 cells/well in six-well plates, and transiently transfected
with 1 mg of the PPARγ expression vector, or control plasmid
(pcDNA empty vector) in the presence of transfectin. After 5 h,
the medium was changed with DMEM containing 1% fetal calf
serum, and samples were incubated at 37°C in an incubator con-
taining 5% CO2 for 48 h. PPARγ expression and pcDNA empty
vectors were donated by Dr R Evans (The Salk Institute, San
Diego, California, USA). Cells were then harvested for RNA
and protein extractions as previously described.13

RNA isolation and real-time PCR
Primary chondrocytes were prepared from the dissected articular
cartilage and cultured as discussed above. Total RNA was isolated
from the chondrocytes using Trizol (Invitrogen, Burlington,
Ontario, Canada). RNeasy Mini kit (QIAGEN, Toronto, Ontario,
Canada) was used, including on-column DNase digestion to elimin-
ate DNA (RNase-Free DNase Set, QIAGEN). RNA were reverse
transcribed and amplified using the QuantiTect Reverse
Transcription PCR Kit (QIAGEN) on the Rotor Gene 3000 real-
time PCR system (Corbett Research, Mortlake, Australia) according
to the manufacturer’s protocol as shown before.6 Fold increase in
PCR products was analysed using a 2−ΔΔCt method. All experiments
were performed in duplicate for each sample, and the primers were
designed using Primer3 online software. Data were normalised to
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glyceraldehyde 3-phosphate dehydrogenase (GAPDH) messenger
RNA (mRNA) levels and represent averages and SEM. The statis-
tical significance of quantitative polymerase chain reaction (qPCR)
results was determined by a two-way analysis of variance with the
Bonferroni post-test, using GraphPad Prism V.3.00 for Windows.

Western blotting
Cells were lysed in Tris-buffered saline containing 0.1% sodium
dodecyl sulphate (SDS), and the protein content of the lysates was
determined using bicinchoninic acid protein assay reagent (Pierce
Rockford) with BSA as the standard. Cell lysates were adjusted to
identical equals of protein and then were applied to
SDS-polyacrylamide gels (10%–15%) for electrophoresis. Next,
the proteins were electroblotted onto polyvinylidene fluoride mem-
branes. After the membranes were blocked in 10 mM Tris-buffered
saline containing 0.1% Tween-20 (TBS-T) and 5% skimmed milk,
the membranes were probed for 1.5 h with the respective anti-
bodies in TBS-T. After washing the membranes with TBS-T, the
membranes were incubated overnight with horseradish peroxidase-
conjugated antirabbit, or horseradish peroxidase-conjugated anti-
mouse IgG (1:10 000 dilution in TBS-T containing 5% skimmed
milk) at 4°C. Subsequently, by further washing with TBS-T, protein
bands were visualised with an enhanced chemiluminescence system
using a Bio-Rad Chemidoc Apparatus.

Generation of inducible cartilage-specific PPARγ-mTOR
double KO mice
The generation of inducible cartilage-specific PPARγ-mTOR double
KO mice was performed by using the Cre-Lox methodology. First,
mTORfl/flCol2-rt-TA-Cre mice were generated by mating mice con-
taining an mTOR gene flanked by LoxP sites (C57BL/6-mTORfl/fl,
Jackson Laboratory) with C57BL/6 Col2-rt-TA-Cre transgenic mice
as previously reported.6 Subsequently, PPARγfl/flCol2-rt-TA-Cre
mice were crossed with mTORfl/flCol2-rt-TA-Cre to create PPARγfl/
fl-mTORfl/flCol2-rtTA-Cre animals. Next, 6-week-old
PPARγfl/fl-mTORfl/flCol2-rtTA-Cre mice were fed doxycycline
(sigma-) dissolved at 10 mg/mL in PBS by oral gavage with the dose
of 80 mL/g body weight for 7 days. The routine genotyping of ear
punch DNA followed by the confirmation of loss of PPARγ and
mTOR expression in the chondrocytes by RT-PCR, and western
blotting was performed.6 13 20 All animal procedures were approved
by the Comité Institutionnel de protection des animaux
(Institutional Animal Protection Committee) of the University of
Montreal Hospital Research Centre (CRCHUM). PPARγfl/
fl-mTORfl/fl-Col2-rtTA-Cre treated with doxycycline are refereed
as PPARγ-mTOR double KO mice, whereas PPARγfl/fl-mTORfl/
flCol2-rtTA-Cre treated with saline (control) are referred as control
mice. Mice, 10 weeks old, were subjected to DMMOA surgery and
were sacrificed at 10 weeks postsurgery for histo-morphometric
evaluation and biochemical analyses.

Statistical analysis
Statistical analysis, unless stated otherwise, was performed using
the two-tailed Student’s t test; p<0.05 was considered statistic-
ally significant.

RESULTS
PPARγ KO mice exhibit accelerated OA phenotype
To determine the specific in vivo role of PPARγ in OA pathophysi-
ology, we first generated inducible cartilage-specific PPARγ KO
mice. The presence of Cre transgene in PPARγfl/fl mice was con-
firmed by genotyping (figure 1A). PPARγfl/fl Cre mice that were 6
weeks old were fed doxycycline (or saline for controls) for 1 week
by oral gavage, and the loss of PPARγ expression in articular

chondrocytes was confirmed by qPCR, western blotting and
immunohistochemistry in 10-week-old mice (figure 1B–D).
Doxycycline-treated PPARγfl/flCol2-rtTA-Cre mice are referred to
as PPARγ KO mice, and saline-treated PPARγfl/flCol2-rtTA-Cre
mice are referred as control mice throughout the manuscript. The
assessment of weight, size, as well as histological analysis of articu-
lar cartilage at 10 weeks and 6 months (see online supplementary
figure S1) postbirth, showed no significant phenotypic differences
between control and inducible cartilage-specific PPARγ KO mice.
We then subjected 10-week-old male control and PPARγ KO mice
to a DMM model of OA, or sham surgery, and determined the
kinetics of OA at 5 and 10 weeks post-OA surgery. As expected,
histological analysis at 5 weeks post-OA surgery, control mice knee
joints showed some loss of proteoglycans (loss of safranin O stain-
ing), roughening of the articular cartilage, and some loss of articu-
lar chondrocyte cellularity (figure 1E). However, PPARγ KO mice
showed greater loss of proteoglycans, the loss of cellularity and
destruction in some regions of the articular cartilage at 5 weeks
post-OA surgery. This phenotype became more profound at
10 weeks post-OA surgery, where PPARγ KO mice, in comparison
with control mice, showed significant and severe destruction of
the articular cartilage (in both medial tibial plateau and medial
femoral condyle) associated with greater loss of proteoglycans and
chondrocyte cellularity. These results were confirmed by the sig-
nificant increase in the OARSI scores (figure 1F) and significant
loss of articular chondrocytes (figure 1G) in PPARγ KO mice com-
pared with control mice post-OA surgery (figure 1F).

PPARγ KO mice exhibit enhanced cell death, increased
expression of catabolic/inflammatory markers,
and decreased expression of anabolic markers
Since we observed decreased articular chondrocyte cellularity in
PPARγ KO OA mice compared with control OA mice, we iso-
lated chondrocytes from PPARγ KO and control mice at 5 weeks
post-OA surgery, and determined the expression of poly
(ADP-ribose) polymerase (PARP) p85 by western blotting to
account for cell apoptosis. Results showed increased expression
of PARPp85 in PPARγ KO OA chondrocytes compared with
control OA chondrocytes (figure 2A, B). TUNEL assay further
confirmed enhanced cell death (increased percentage of
TUNEL-positive cells) in PPARγ KO mice compared with
control mice at 10 weeks post-OA surgery (figure 2C, D).

Since matrix metalloproteinases (MMP)-13 is one of the major
catabolic factors implicated in OA, we determined the expression
of MMP-13 by IHC. Our results showed an increase in the per-
centage of MMP-13-positive cells in PPARγ KO mice compared
with control mice at 10 weeks post-OA surgery (figure 2E, F).
Further, qPCR analysis on isolated chondrocytes from PPARγ
KO OA mice and control OA mice showed the enhanced
gene expression of MMP-13, ADAMTS-5 (another key
catabolic factor implicated in OA), enhanced expression of
inflammatory-inducible enzymes including cyclooxygenase-2
(COX-2) and inducible nitric oxide synthase (iNOS), and the
decreased expression of collagen type II and aggrecan (two major
anabolic components of the ECM of the articular cartilage) in
PPARγ KO mice OA chondrocytes compared with control OA
mice chondrocytes (figure 2G). These results show that PPARγ
KO mice subjected to OA surgery exhibit accelerated chondro-
cyte loss and enhanced catabolic activity in the articular cartilage.

PPARγ deficiency results in aberrant mTOR
and autophagy signalling
We have previously shown that during OA, excessive mTOR
(major negative regulator of autophagy) signalling and the
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Figure 1 Peroxisome proliferator-activated receptor gamma (PPARγ) knockout (KO) mice exhibit accelerated osteoarthritis (OA) phenotype:
(A) genotyping confirmed the presence of the Cre transgene in heterozygote (PPARγfl/w) and homozygote (PPARγfl/fl) mice and its absence in
wild-type mice; (B and C) qPCR and western blotting analysis of isolated chondrocytes confirmed absence of PPARγ expression in PPARγfl/flCre mice
treated with doxycycline compared with PPARγfl/flCre mice treated with saline. (n=5, *p<0.05); (D) immunohistochemical staining for PPARγ
confirmed the absence of PPARγ expression in the articular cartilage of PPARγfl/flCre mice treated with doxycycline compared with PPARγfl/flCre mice
treated with saline (n=4, magnification: ×40); (E) histological analysis using Safranin O/fast green staining of 5 and 10 weeks post-OA surgery knee
joint sections demonstrate that PPARγ KO mice exhibit accelerated osteoarthritis (OA) phenotype associated with greater cartilage degradation and
loss of safranin O staining compared with control mice (magnification: ×6.2 and ×25); (F) Osteoarthritis Research Society International (OARSI)
scoring of medial tibial plateau and medial femoral condyle showed a significant increase (*p<0.05) in the OARSI scores in both control OA and
PPARγ KO OA mice (5 weeks and 10 weeks post-OA surgery) compared with non-surgery and sham surgery control and PPARγ KO mice,
respectively. A significant increase (+p<0.05) in the OARSI scores was observed in both 5 and 10 weeks post-OA surgery PPARγ KO mice compared
with 5 and 10 weeks post-OA surgery control mice (n=6); (G) quantification of articular chondrocyte cellularity revealed significant (*p<0.05) loss of
chondrocyte cellularity in both control OA and PPARγ KO OA mice (10 weeks post-OA surgery) compared with non-surgery and sham surgery control
and PPARγ KO mice, respectively. PPARγ KO mice at 10 weeks post-OA surgery exhibited significantly (+p<0.05) greater loss of chondrocyte
cellularity compared with control mice at 10 weeks post-OA surgery. (n=4).
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subsequent suppression of autophagy genes may contribute to
decreased chondroprotection and cartilage degeneration.6

Further, treatment with rapamycin has been shown to reduce
the severity of experimental OA.10

In the present study, we observed that PPARγ KO mice sub-
jected to OA surgery exhibit accelerated chondrocyte cell death
and enhanced catabolic activity. We therefore determined the
effect of PPARγ deficiency on the expression of mTOR and
autophagy markers in articular chondrocytes isolated from non-

surgery and 5 weeks post-OA surgery control and PPARγ KO
mice. As expected,17 our results first showed that PPARγ
expression is significantly reduced in control OA surgery chon-
drocytes compared with control non-surgery chondrocytes
(figure 3A, B). PPARγ expression was not detected in the PPARγ
KO chondrocytes. The assessment of mTOR expression showed
opposite expression profile compared with PPARγ expression
profile. Low levels of mTOR expression were observed in
control non-surgery chondrocytes, but were significantly

Figure 2 Peroxisome proliferator-activated receptor gamma (PPARγ) knockout osteoarthritis (KO OA) mice exhibit enhanced cell death, increased
expression of catabolic/inflammatory markers and decreased expression of anabolic markers: (A and B) western blotting analysis on isolated
chondrocytes showed a significant increase in poly (ADP-ribose) polymerase p85 expression in PPARγ KO OA mice chondrocytes compared with
control OA mice chondrocytes at 5 weeks post-surgery (n=4; p<0.05); (C–F) TUNEL staining and MMP-13 immunohistochemical analysis showed a
significant increase in the percentage (%) of TUNEL and MMP-13 positive cells in PPARγ KO OA mice compared with control OA mice at 10 weeks
post-OA surgery (n=4, magnification: ×40); (G) qPCR analysis showed a significant increase in the gene expression of MMP-13, ADAMTS-5, iNOS,
and COX-2, and a significant decrease in the expression of collagen type II and aggrecan in PPARγ KO OA mice chondrocytes compared with control
OA mice chondrocytes at 5 weeks post-OA surgery (n=4, *p<0.05).
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elevated in control OA chondrocytes as expected.6 Interestingly,
our results revealed that PPARγ KO chondrocytes exhibited sig-
nificantly enhanced expression of mTOR in both non-surgery
and OA conditions compared with chondrocytes from non-
surgery control mice and OA surgery control mice. Since
mTOR negatively regulates autophagy, we further determined
the expression of LC3B, an autophagosome marker for moni-
toring autophagy. The expression of LC3B II was significantly
reduced in control OA chondrocytes compared with control
non-surgery chondrocytes. Our results also revealed that PPARγ
KO chondrocytes exhibited a significant decrease in LC3B II
expression in both non-surgery and OA conditions compared
with control chondrocytes from non-surgery mice and OA
surgery mice, respectively, thus exhibiting an opposite expres-
sion profile observed for mTOR. It was interesting to notice
that despite significant differences in the levels of mTOR and
LC3B II expression under basal conditions (non-surgery) in
PPARγ KO mice chondrocytes compared with control chondro-
cytes, we did not observe any significant differences in the
articular cartilage cellularity at baseline in vivo.

qPCR analysis also confirmed a significant increase in mTOR
expression and significant reduction in the expression of LC3B
and other key autophagy genes including unc-51 like autophagy
activating kinase 1 (ULK1) (most upstream autophagy
inducer),23 autophagy gene 5 (ATG5) (an autophagy regula-
tor),24 and BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3 (BNIP3) (an interactor of LC3 in autophagy)25 in
PPARγ KO OA chondrocytes compared with chondrocytes
extracted from control OA mice (figure 3C, D).

PPARγ regulates mTOR/autophagy signalling pathway and
controls the balance between catabolic/anabolic factors in vitro
Since PPARγ deficiency in the chondrocytes resulted in the aber-
rant expression of catabolic, anabolic and inflammatory markers
associated with the dysregulated expression of mTOR and
autophagy markers, we hypothesised that PPARγ is involved in
the regulation of mTOR/autophagy pathway and may, in part,
be responsible for maintaining the balance between catabolic
and anabolic processes in the articular cartilage. To test this
hypothesis, we transfected PPARγ-deficient OA chondrocytes

Figure 3 Aberrant expression of
mammalian target for rapamycin
(mTOR) and autophagy markers in
peroxisome proliferator-activated
receptor gamma (PPARγ)-deficient
chondrocytes: (A and B) PPARγ
expression was significantly (*p<0.05)
reduced in chondrocytes extracted from
5-week post osteoarthritis (OA) surgery
control mice compared with
non-surgery control mice. PPARγ
expression was not detected (ND) in
both PPARγ knockout (KO) non-surgery
and PPARγ KO OA surgery
chondrocytes. A significant (*p<0.05)
increase in mTOR protein expression
and significant decrease in LC3B II
expression was observed in control OA
chondrocytes compared with control
non-surgery chondrocytes as well as
PPARγ KO OA chondrocytes compared
with PPARγ KO non-surgery
chondrocytes. A significant (+p<0.05)
increase in mTOR protein expression
and decrease in LC3B II expression was
observed in both PPARγ KO
non-surgery and PPARγ KO OA surgery
chondrocytes compared with control
non-surgery and control OA
chondrocytes, respectively (n=4);
(C and D) qPCR analysis showed a
significant increase in the messenger
RNA (mRNA) expression of mTOR and
a significant decrease in the mRNA
expression of LC3B, ULK1, ATG5 and
BNIP3 in PPARγ KO OA mice
chondrocytes compared with control
OA mice chondrocytes (n=4, *p<0.05).
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with PPARγ expression vector to determine if restoration of
PPARγ expression can rescue the phenotype of PPARγ KO OA
cells. We observed that the restoration of PPARγ expression in
KO cells by PPARγ expression vector (figure 4A) was able to
downregulate the protein and mRNA expression of mTOR
(figure 4A, B), enhance the LC3B II protein expression and
LC3B mRNA expression and downregulate protein and mRNA
expression of MMP-13 (figure 4C, D). qPCR analysis further
showed that the restoration of PPARγ expression in KO cells
was able to rescue and upregulate the expression of other autop-
hagy genes (ULK-1, ATG5 and BNIP3) and anabolic factors
(collagen type II and aggrecan), as well as downregulate the
expression catabolic (ADAMTS-5; a disintegrin and metallopro-
tease with thrombospondin motifs) and inflammatory markers
(iNOS and COX-2) (figure 4E–G).

Cartilage-specific PPARγ-mTOR double KO mice exhibit
protection from OA
Our results suggest that PPARγ deficiency in part could be
responsible for increased mTOR signalling, the inhibition of
critical autophagy markers, ultimately resulting in increased
catabolic/inflammatory activity (and reduced anabolic activity)

within the articular cartilage leading to severe/accelerated OA.
To test this in vivo, we generated inducible cartilage-specific
PPARγ-mTOR double KO mice (figure 5A–C). These mice were
subjected to DMM surgery. Histological analysis (using OARSI
scoring) in 10 weeks post-OA surgery demonstrated that
PPARγ-mTOR double KO mice were significantly protected
from DMM-induced OA associated with the significant protec-
tion from cartilage destruction, proteoglycan loss and loss of
chondrocytes in both medial tibial plateau and medial femoral
condyle compared with control mice (figure 5D, E). The quanti-
fication of articular chondrocyte cellularity (figure 5F) and
TUNEL staining (figure 5G) further confirmed a significant
reduction in chondrocyte cell death in double KO mice com-
pared with control mice at 10 weeks post-OA surgery.
Furthermore, we also observed a significant reduction in the
percentage of MMP-13-positive cells (figure 5H), and enhanced
LC3B II expression in double KO OA chondrocytes compared
with control OA chondrocytes (figure 5I).

DISCUSSION
Autophagy is a cellular homeostatic process involving the
turnover of organelles and proteins by lysosome-dependent

Figure 4 Peroxisome
proliferator-activated receptor gamma
(PPARγ) expression vector rescues the
aberrant expression of catabolic,
anabolic and inflammatory markers,
and the dysregulated expression of
mammalian target for rapamycin
(mTOR)/autophagy markers in PPARγ
knockout osteoarthritis (KO OA)
chondrocytes: PPARγ KO chondrocytes
(isolated at 5 weeks post-OA surgery)
were cultured and transfected with
PPARγ expression vector or empty
vector. Rescue of PPARγ in PPARγ KO
chondrocytes by PPARγ expression
vector resulted in: (A and B) decrease
in the protein and messenger RNA
expression of mTOR (n=4, *p<0.05);
(C) increase in LC3B II expression and
decrease in MMP-13 expression (n=4),
(D) increase in the mRNA expression of
LC3B and decrease in the mRNA
expression of MMP-13; (E) increase in
mRNA expression of ULK1, ATG5 and
BNIP3; (F) increase in the expression of
aggrecan and collagen type II and
decrease in the mRNA expression of
ADAMTS-5; (G) decrease in mRNA
expression of COX-2 and iNOS; (n=4,
*p<0.05).
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degradation pathway.26–28 Autophagy plays a key role in the
modulation of cell death/survival, adaptive immunity, inflam-
mation and cellular homeostasis and dysregulation in this
homeostatic process has been associated with several

disorders, including cardiomyopthies, neurodegeneration and
abnormal skeletal development.29 30 mTOR, a serine/threo-
nine protein kinase, is a master negative regulator of autop-
hagy, and modulates growth, proliferation, motility and

Figure 5 Inducible cartilage-specific peroxisome proliferator-activated receptor gamma (PPARγ)-mammalian target for rapamycin (mTOR) double
knockout (KO) mouse are protected from destabilisation of medial meniscus (DMM)-induced osteoarthritis (OA): (A) genotyping confirms the
presence of the Cre transgene in heterozygote (PPARγfl/w-mTORfl/w) and homozygote (PPARγfl/fl-mTORfl/fl) mice and its absence in wild-type mice;
(B and C) qPCR and western blotting analysis of isolated chondrocytes confirmed absence of PPARγ and mTOR expression in PPARγfl/fl-mTORfl/flCre
mice treated with doxycycline compared with PPARγfl/fl-mTORfl/flCre mice treated with saline (n=5, *p<0.05); (D) histological analysis using safranin
O/fast green staining of 10 weeks post-OA surgery knee joint sections demonstrate that in comparison with control mice, PPARγ-mTOR double KO
mice exhibit significant protection from DMM-induced OA associated with reduced cartilage degradation, proteoglycan loss and reduced loss of
articular chondrocyte cellularity (n=5, magnification: ×6.2 and ×25); (E) Osteoarthritis Research Society International (OARSI) scoring of medial tibial
plateau and medial femoral condyle showed a significant increase (*p<0.05) in the OARSI scores in both control OA and PPARγ KO OA mice
(10 weeks post-OA surgery) compared with non-surgery and sham surgery control and PPARγ KO mice, respectively. A significant (+p<0.05)
reduction in the OARSI score was observed at both medial tibial plateau and medial femoral condyle in PPARγ-mTOR double KO mice compared
with control mice at 10 weeks post-OA surgery (n=5, *p<0.05); (F) quantification of articular chondrocyte cellularity revealed significant (*p<0.05)
loss of chondrocyte cellularity in both control OA and PPARγ KO OA mice (10 weeks post-OA) compared with non-surgery and sham surgery control
and PPARγ KO mice, respectively. Further, comparison between PPARγ-mTOR double KO mice and control mice at 10 weeks post-OA surgery
revealed a significant (+p<0.05) protection from articular chondrocyte loss during OA (n=6, *p<0.05); (G and H) a significant decrease in the
percentage (%) of TUNEL and MMP-13 positive cells in PPARγ-mTOR double KO OA mice compared with control OA mice at 10 weeks post-OA
surgery (n=4, magnification: ×40); (I and H) increase in light chain 3B (LC3B) II expression in PPARγ-mTOR double KO OA mice chondrocytes
compared with control OA mice chondrocytes at 10 weeks post-OA surgery (n=4; *p<0.05).

576 Vasheghani F, et al. Ann Rheum Dis 2015;74:569–578. doi:10.1136/annrheumdis-2014-205743

Basic and translational research
 on A

pril 27, 2024 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2014-205743 on 8 January 2015. D
ow

nloaded from
 

http://ard.bmj.com/


survival in cells. Akt has been shown to directly phosphoryl-
ate and activate mTOR as well as mTOR can negatively regu-
late PI3 K/Akt activity.31–33

mTOR is upregulated during OA and is associated with the
suppression of autophagy signalling in the articular cartilage
resulting in decreased chondroprotection, and thus promoting
cartilage degeneration.6 Both the pharmacological inhibition
and genetic deletion of mTOR has been shown to reduce the
severity of experimental OA.6 10 It is, however, unclear which
endogenous mediators controls mTOR and autophagy signalling
in the articular cartilage. Identifying endogenous mediators that
control mTOR/autophagy signalling and, ultimately, the fate of
articular cartilage chondrocytes will help generate new thera-
peutic strategies to modulate cartilage homeostasis and counter-
act cartilage degeneration.

PPARγ is a ligand-activated transcription factor known to play
a key role in inflammation, fibrosis and resolution of tissue
repair process. Studies suggest that the activation of this tran-
scription factor is a therapeutic target for OA. It has been
shown that agonists of PPARγ exhibit anti-inflammatory and
anticatabolic properties in vitro and in vivo, and impart protec-
tion from OA in animal models.12 16–18 However, studies using
agonists of PPARγ do not elucidate the exact effects mediated
by this complex gene. Indeed, some of these agonists have the
ability to regulate, in vivo, various other signalling pathways
independent of PPARγ. Additionally, the in vivo role of PPARγ
in articular cartilage homeostasis is largely unknown.

We have previously reported that germ-line cartilage-specific
PPARγ KO mice exhibit early developmental defects and exhibit
accelerated spontaneous OA phenotype during adulthood.14 In
the present study, we created for the first time, inducible
cartilage-specific PPARγ KO mice. Unlike germ-line cartilage-
specific PPARγ KO mice, inducible cartilage-specific PPARγ KO
mice did not exhibit any developmental defects and spontan-
eous OA phenotype.

We then subjected these mice to a DMM model of OA. Our
results clearly show that the genetic deficiency of PPARγ in the
articular cartilage results in accelerated and severe OA pheno-
type upon DMM surgery. Compared with control mice,
cartilage-specific PPARγ KO mice exhibit accelerated articular
cartilage degeneration associated with greater articular chondro-
cyte cell death, proteoglycan loss, enhanced expression of cata-
bolic (MMP-13 and ADAMTS-5) and inflammatory mediators
(COX-2 and iNOS) and reduced expression of ECM anabolic
factors (aggrecan and collagen type II). Our results further show
that both non-surgery (basal condition) and OA surgery PPARγ
KO chondrocytes exhibit enhanced mTOR expression and
decreased LC3B II expression compared with control non-
surgery and control OA mice chondrocytes.

Based on these results, we further wanted to test if the
genetic deficiency of PPARγ and subsequent elevation in the
expression of mTOR and suppression of autophagy could, in
part, be responsible for increased catabolic and inflammatory
activity in the articular cartilage resulting in severe OA pheno-
type in PPARγ KO mice. To test this, we transfected
PPARγ-deficient OA chondrocytes with PPARγ expression
vector, and observed that the restoration of PPARγ expression in
PPARγ KO cells resulted in a significant downregulation in the
expression of mTOR and upregulation in the expression of
LC3B II as well as elevation in the gene expression of other key
autophagy genes. Additionally, the restoration of PPARγ expres-
sion in PPARγ KO cells resulted in significant rescue in the
expression of collagen type II and aggrecan, and downregulation
in the expression of catabolic (MMP13 and ADAMTS-5) and
inflammatory markers (iNOS and COX-2) in PPARγ KO OA
chondrocytes. To further explore that mTOR and autophagy
pathways are indeed responsible for severe OA phenotype
observed in PPARγ KO mice, we generated inducible cartilage-
specific PPARγ-mTOR double KO mice and subjected these
mice to DMM surgery. Results showed that PPARγ-mTOR
double KO mice exhibited significant protection from
DMM-induced cartilage destruction, proteoglycan loss and loss
of chondrocyte-cellularity associated with significant reduction
in TUNEL and MMP-13-positive cells and increase in LC3B II
expression, thus reversing the accelerated OA phenotype
observed in PPARγ KO mice in vivo.

Our in vitro rescue studies using PPARγ expression vector and
in vivo studies using PPARγ-mTOR double KO mice show that
PPARγ is involved in the regulation of mTOR/autophagy signal-
ling in the articular cartilage. Therefore, the deficiency of
PPARγ in the articular cartilage may, in part, be responsible for
upregulation in mTOR signalling resulting in the suppression of
autophagy and decreased chondroprotection and increased cata-
bolic activity leading to accelerated severe OA. The relationship
between PPARγ and autophagy has been previously reported in
breast cancer. Zhou et al.34 showed that PPARγ activation by its
ligands induces autophagy in breast cancer. Further, interaction
between PPARγ and mTOR pathways during lipid uptake and
adipogenesis has also been reported.35 36 Our study, for the first
time, provides a direct evidence on the role of PPARγ in chon-
droprotection, in part, by the modulation of mTOR/autophagy
signalling in the articular cartilage. Since mTOR is a complex
and multifactorial mediator, it is worth mentioning that the
PPARγ/mTOR signalling observed in the articular cartilage may
also involve other non-autophagy pathways that require further
investigation. It would also be interesting to investigate the func-
tional consequences of interaction between PPARγ and two mul-
tiprotein mTOR complexes to fully elucidate the relationship

Figure 5 Continued
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between PPARγ and mTOR signalling pathway in the articular
cartilage. Since the use of dual inhibitors of PI3K/Akt and
mTOR has been proposed as a promising therapeutic approach
in OA,37 it would be interesting to identify the exact relation-
ship between PPARγ and PI3K/Akt-mTOR pathways.
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Supplementary Figure 1: Histological analysis using Safranin O/fast green 

staining of 6 months old PPARγ KO mice and control mice showed no signs of 

cartilage degeneration (n=4;Magnification: ×40). 
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