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A homeostatic function of CXCR2 signalling

in articular cartilage
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ABSTRACT

Objective ELR+ CXC chemokines are heparin-binding
cytokines signalling through the CXCR1 and CXCR2
receptors. ELR+ CXC chemokines have been associated
with inflammatory arthritis due to their capacity to
attract inflammatory cells. Here, we describe an
unsuspected physiological function of these molecules in
articular cartilage homeostasis.

Methods Chemokine receptors and ligands were
detected by immunohistochemistry, western blotting and
RT-PCR. Osteoarthritis was induced in wild-type and
CXCR2™'~ mice by destabilisation of the medial
meniscus (DMM). CXCR1/2 signalling was inhibited

in vitro using blocking antibodies or siRNA. Chondrocyte
phenotype was analysed using Alcian blue staining,
RT-PCR and western blotting. AKT phosphorylation and
SOX9 expression were upregulated using constitutively
active AKT or SOX9 plasmids. Apoptosis was detected by
terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL) assay.

Results CXCL6 was expressed in healthy cartilage and
was retained through binding to heparan sulfate
proteoglycans. CXCR2™'~ mice developed more severe
osteoarthritis than wild types following DMM, with
increased chondrocyte apoptosis. Disruption of CXCR1/2
in human and CXCR2 signalling in mouse chondrocytes
led to a decrease in extracellular matrix production,
reduced expression of chondrocyte differentiation
markers and increased chondrocyte apoptosis. CXCR2-
dependent chondrocyte homeostasis was mediated by
AKT signalling since forced expression of constitutively
active AKT rescued the expression of phenotypic markers
and the apoptosis induced by CXCR2 blockade.
Conclusions Our study demonstrates an important
physiological role for CXCR1/2 signalling in maintaining
cartilage homeostasis and suggests that the loss of ELR+
CXC chemokines during cartilage breakdown in
osteoarthritis contributes to the characteristic loss of
chondrocyte phenotypic stability.

INTRODUCTION

Osteoarthritis (OA) is a leading cause of chronic
disability, characterised by the breakdown of the
articular cartilage, for which we have no cure.
Whereas in inflammatory arthritides inflammation
is the main driver of tissue destruction, in OA,
mechanical factors are the main drivers of cartilage
breakdown while a low degree of synovitis detected
only in a subset of patients may have an ancillary
role.’

Metalloproteinase and  aggrecanase-mediated
extracellular matrix (ECM) degradation, and chon-
drocyte apoptosis all contribute to cartilage break-
down and are initially compensated by chondrocyte
proliferation and upregulation of SOX9, which dir-
ectly regulates the synthesis of major ECM compo-
nents including aggrecan and type II collagen.”™
When such compensatory mechanisms are impaired
or insufficient, cartilage breakdown progresses and
ultimately leads to joint failure. Supporting the
homeostatic response of cartilage can slow down or
even revert cartilage degeneration in animal
models.”

Enclosed within the cartilage matrix, chondro-
cytes are not known to migrate in physiological
conditions. In spite of this, however, chondrocytes
express several chemokine receptors, including
CXCR1 and CXCR2 and their cognate ligands that
have been extensively studied in the context of
arthritis.” 8

ELR+ CXC chemokines are chemotactic cytokines
characterised by their glutamic acid-leucine-arginine
(ELR+) motif. The chemokine receptor CXCR2
binds the human CXC chemokine ligands CXCL1,
CXCL2, CXCL3, CXCLS5, CXCL6, CXCL7 and
CXCL8 while CXCR1 binds only to CXCL6
and CXCL8.” Mice lack Cxcl8 and express only one
gene that shows homology to the human CXCL5
and CXCL6 (hereafter referred to as mouse
CXCL6). Although a putative murine homologue of
human CXCR1 has been identified,'® mouse
CXCR?2 is considered the main ELR+ CXC chemo-
kine receptor because its function cannot be compen-
sated in neutrophil chemotaxis and wound
healing."'™"* CXCR1 and CXCR2 activate intracellu-
lar calcium and lead to activation of the Pi3K/AKT
signalling pathway.'* '

Although the biology and expression in vivo of
CXCR1 and CXCR2 in intact normal human
articular cartilage has not been reported, the
expression of these receptors and various chemo-
kines have been characterised in isolated arthritic
chondrocytes.” ®* ELR+ CXC chemokines have
been studied and targeted in inflammatory arthritis
because of their capacity to attract inflammatory
cells. CXCLS8 was shown to stimulate, in vitro, the
production of inflammatory mediators, metallopro-
teinases and the induction of hypertrophy and
calcification.'®

Here, we report a novel, unsuspected homeo-
static role for CXCR1/2 signalling in the articular
cartilage where ELR+ CXC chemokines are
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retained in the ECM through binding to GAGs and
cell-autonomously support chondrocyte viability and differenti-
ation through AKT-dependent SOX9 expression. We suggest
that disruption of CXCR1/2 signalling is an important event in
osteoarthritis, resulting in the loss of chondrocyte phenotypic
stability and promoting OA-like changes.

MATERIALS AND METHODS

Mice

000.651 BALB/c] and C.129S2(B6)-Cxcr2tm1Mwm/] CXCR2
(=/-) mice (BALB/c] background) were obtained from The
Jackson Laboratory and maintained in pathogen-free conditions.
The Animal Use Committee for the University of Miinster
(Landesamt fiir Natur, Umwelt und Verbraucherschutz, approval
number 84-02.04.2012.A189) approved all mouse procedures.

Destabilisation of the medial meniscus

Ten-week-old BALB/C or CXCR27~ male mice received desta-
bilisation of the medial meniscus (DMM) and sham surgery to
the contralateral limb as described.'”

After 8 weeks, mice were killed and the joints were processed
as previously described.'® A minimum of five sections per joint
were stained using toluidine blue for histological analysis and
Osteoarthritis Research Society International (OARSI) scoring
for osteoarthritis severity by two independent investigators.

Cartilage harvest, chondrocyte isolation and culture
Full-thickness human articular cartilage was obtained from the
femoral condyles of patients undergoing knee joint replacement
surgery (ethics approval from the East London & The City
Ethics Committee 3). Normal articular cartilage was obtained
from postmortem and trauma surgery donors. Chondrocytes
were isolated and cultured as previously described.'® Mouse
costal chondrocytes were obtained from the ribcages of BALB/C
wild-type and CXCR2™/~ mice.

Micromass culture of primary chondrocytes or JJ012 cells
and quantification of glycosaminoglycan content were per-
formed as described.”® The ATDCS cell line was differentiated
in monolayer culture for 14 days in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10 pwg/mL human insulin
as described?! before use.

CXCR blockade using blocking antibodies

Chondrocyte culture medium was replaced with DMEM supple-
mented with 1% heat-inactivated fetal bovine serum. After 24 h,
CXCR1 and CXCR2 blocking antibodies (R&D systems) or
isotype-matched negative control antibodies (Dako) were added
at a total concentration of 10 pg/mL. Chondrocytes were then
cultured for 4 days before phenotypic analysis.

siRNA transfection

Human CXCR1 and CXCR2, or mouse CXCR2, were knocked
down using Stealth siRNA (Life Technologies), used at a total
concentration of 20 nM in complete DMEM using jetPRIME
transfection reagent (Polyplus) according to the manufacturer’s
instructions. A Stealth RNAi negative control duplex of medium
guanine—cytosine (GC) content (Life Technologies) was used as
a negative control.

Western blot analysis

Cell lysates were run on a 10% Tris-glycine gel (Life
Technologies) and transferred onto nitrocellulose membrane
(GE Healthcare). Primary antibodies used were rabbit anti-mouse
pAKT (ser473) (Cell Signaling) 1:200 dilution, rabbit anti-

mouse AKT (Cell Signaling) 1:500 dilution or rabbit anti-mouse
CXCL6 (Biorbyt) 1:200 dilution in blocking solution at 4°C
overnight. For more detailed protocols, see online supplemen-
tary methods.

Immunofluorescence analysis of mouse and human cartilage
Human cartilage explant and decalcified mouse knee joint sec-
tions were deparaffinised and the subsequent steps including
blocking and pepsin antigen retrieval were performed as previ-
ously described.”> Human sections and monolayer cells were
analysed using (anti-CXCR1, -CXCR2 or CXCL6 (R&D))
primary antibodies followed by Cy2 conjugated goat anti-mouse
IgG secondary antibodies (Jackson ImmunoResearch). Mouse
knee sections were incubated with rabbit anti-mouse -GCP2
(Biorbyt), -CXCR2 (R&D), -Col X (Abcam) or anti-Col II
(Chemicon), followed by chicken anti-rabbit Alexa Fluor 488 or
chicken anti-rabbit Alexa Fluor 594 secondary antibodies (Life
Technologies). Mouse isotype control IgG (Dako) or rabbit IgG
(Abcam) were used as control primary antibodies.

Apoptosis was detected by terminal deoxynucleotidyl trans-
ferase dUTP nick end labelling (TUNEL) assay (Roche) accord-
ing to the manufacturer’s instruction.

Images were acquired at 22°C by either Leica DM5500 Q
Confocal microscope using 40X magnification/0.75 numerical
aperture, or Olympus BX61 microscope with a fixed exposure
using either 10%/0.4 or 20%/0.7 objective lenses using Cell-P soft-
ware. Images were enhanced using Adobe Photoshop for better
rendering without altering relationship of target to control images.

Cartilage explant digestion

Hip caps from 4-week-old BALB/C wild-type mice were decellu-
larised by repeated freeze thawing. Hip caps were incubated
overnight at 37°C either in phosphate buffered saline (PBS) or
in PBS containing 5 mU/mL heparitinase (Seikagaku). Total pro-
teins were precipitated from supernatants using trichloroacetic
acid and assessed by western blotting.

Total RNA extraction and real-time RT-PCR

RNA extraction and gene expression analysis were performed as
previously described,'® with additional primers found in online
supplementary table S1.

caAKT and SOX9 plasmid transfection

Mouse primary chondrocytes and ATDCS cells were transfected
in monolayer using jetPRIME (Polyplus) according to the manu-
facturer’s instructions. caAKT (Addgene plasmid 10841)* was
used to constitutively activate AKT signalling, and a SOX9
plasmid was used to overexpress SOX9.%*

Statistical analysis

Data are presented as means=SEM. According to data distribu-
tion, parametric (Student t test) or non-parametric (Mann—
Whitney) tests were performed using GraphPad Prism Software,
V.5.0c (GraphPad Software Inc, San Diego, USA), with p<0.05
determining the primary level of significance.

RESULTS

CXCR1/2 and their ligand CXCL6 are expressed in adult
articular cartilage

In vitro, primary adult human articular chondrocytes (AHAC)
expressed the CXC chemokine receptors CXCR1 and CXCR2
at mRNA (figure 1A) and protein levels (figure 1B). We con-
firmed the expression of CXCR1 and CXCR2 within native
human articular cartilage using immunohistochemistry showing
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Figure 1 ELR+ CXC chemokine A
receptors are expressed in human and
mouse articular cartilage. (A)
Semi-quantitative RT-PCR for CXCR1
and CXCR2 in human primary
chondrocytes cultured in monolayer.
(B) Confocal microscopic image of
immunofluorescence staining for
CXCR1 and CXCR2 (green) in human
primary articular chondrocytes cultured
in monolayer, with propidium iodide
(red) staining the nuclei. Scale bar,

20 um. (C) Immunofluorescence
staining for CXCR1 and CXCR2 (green)
in normal and osteoarthritic articular
cartilage, with propidium iodide (red)
staining the nuclei. Scale bar, 20 pm.
(D) Immunofluorescence staining for
CXCR2 (green) in wild type and
CXCR2™"~ mouse articular cartilage,
with propidium iodide (red) staining C
the nuclei. Scale bar, 100 um.

that CXCR1 and CXCR2 were expressed in normal and osteo-
arthritic cartilage (figure 1C). CXCR2, the main functional
murine ELR+ CXC chemokine receptor,'* '* was expressed in
normal mouse articular cartilage (figure 1D).

The CXCR1/2 ligand CXCL6 had a striking and specific
expression pattern in normal cartilage tissue, conserved across
the mouse and human species (figure 2A, B). In humans,
CXCL6 was found within the chondrocyte territorial matrix of
articular cartilage from healthy donors; however, it could no
longer be detected in the matrix of early osteoarthritic cartilage
(figure 2A, B). This pattern was confirmed in the mouse, where
CXCL6 was present within the articular cartilage matrix of
unchallenged BALB/C mice, but was reduced 8 weeks following
DMM surgery (figure 2C, D). In contrast, CXCL8 in human
and CXCL1 in mouse were hardly detectable at protein level in
healthy or OA cartilage (see online supplementary figure S1).

If high levels of CXCL6 are produced by healthy chondro-
cytes, what mechanism prevents them from attracting

B IgG Control

Neutrophils Chondrocytes bp

CXCR1 410
CXCR2 459
B-actin 134

CXCR1

CXCR2-/-

inflammatory cells in physiological conditions? ELR+ CXC che-
mokines are known to bind to heparan sulfate proteoglycans
(HSPGs),>~*7 therefore we hypothesised that binding to HSPGs
within the avascular cartilage could retain them within the ECM
and avoid their availability to inflammatory cells. To establish
whether CXCL6 is retained within the cartilage ECM through
binding to HSPGs, mouse cartilage explants were decellularised
through freeze-thawing and were incubated overnight in the
presence or absence of heparitinase. In keeping with its postu-
lated binding to HSPGs, CXCL6 was subsequently retrieved
from the supernatants of heparitinase digested explants but not
from control undigested explants (figure 2E).

In wvitro, in addition to CXCR1 and CXCR2 (figure 1),
AHAC expressed CXCL6 (figure 2F) and CXCLS8 (online sup-
plementary figure 1D) mRNA at early passage, but not follow-
ing serial passaging. Serial passaging is known to be associated
with the loss of chondrocyte phenotypic markers—a process
known as ‘dedifferentiation’*®*°—and of their capacity to form
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cartilage in vivo.”® Conversely, chondrogenic differentiation of
the mouse chondrocytic cell line ATDCS using insulin (figure
2G) resulted in the upregulation of CXCL6 (figure 2H). Taken
together, these data suggested that ELR+ CXC chemokine sig-
nalling may have a physiological function in chondrocyte
homeostasis.

CXCR2 deficiency results in more severe osteoarthritis
following surgically induced joint instability

To investigate whether ELR+ CXC chemokine signalling has a
physiological function in vivo, we compared the outcome of
experimental OA in CXCR2-deficient mice and wild-type con-
trols following DMM surgery. CXCR2-deficient mice, which, at

A

the time of surgery did not display histological features of OA
and expressed collagens type Il and type X at levels comparable
to wild-type controls (see online supplementary figure S2),
exhibited increased OA-like cartilage breakdown in
DMM-operated joints in comparison to wild-type controls
(figure 3A, B). In keeping with OA features, CXCR2-deficient
mice also displayed lower expression of collagen type II within
the articular cartilage (figure 3C, D), accompanied by increased
expression of the chondrocyte hypertrophy marker collagen
type X (figure 3E, F). These results confirm that CXCR2 signal-
ling supports articular cartilage homeostasis in vivo in condi-
tions of challenge and demonstrate that its disruption is
associated with more severe OA.
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Figure 2 CXCL6 is present in healthy articular cartilage and its expression is associated with chondrocyte differentiation. (A) Immunofluorescence
staining for CXCL6 (green) in normal and early osteoarthritis (moderate Mankin score) articular cartilage. Nuclei are stained using propidium iodide
(red). Scale bar, 100 um. (B) Densitometric quantification of CXCL6 staining (n=3). (C) Immunofluorescence staining for CXCL6 (red) in mouse
articular cartilage of sham-operated control and destabilisation of the medial meniscus (DMM) operated mice, with 4',6-diamidino-2-phenylindole
staining the nuclei. Scale bar, 100 um. (D) Densitometric quantification of CXCL6 staining (n=4). (E) Western blot analysis of CXCL6 release into
supernatant from vehicle control or heparitinase treated, freeze-thawed wild-type mouse hip caps. (F) Real-time RT-PCR for CXCL6 mRNA in early
and late passage human articular chondrocytes (n=3), ***p<0.001 by paired t test. (G) Alcian blue staining and spectrophotometric quantification
of ATDC5 cell micromasses differentiated for 14 days using insulin (n=6). (H) Real-time RT-PCR quantification of CXCL6 mRNA expression in ATDC5
cells following 14 days of culture in either control or insulin supplemented differentiation medium (n=6) **p<0.01, ****p<0.0001.
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Figure 3 CXCR2 is required for articular cartilage homeostasis. (A) Toluidine blue staining for wild-type and CXCR2 ™"~ mouse articular cartilage

8 weeks following destabilisation of the medial meniscus (DMM) surgery. Scale bar, 100 um. (B) Osteoarthritis Research Society International score
of osteoarthritis-like changes and cartilage breakdown in BALB/C wild-type and CXCR2™~ mice 8 weeks following DMM surgery (n=10). MT, medial
tibial plateau; MF, medial femoral head, LT, lateral tibial plateau; LF, lateral femoral head. Statistical comparison using Mann-Whitney U test. (C)
Type Il collagen immunofluorescence staining of wild-type and CXCR2—/— mouse articular cartilage 8 weeks following DMM. Nuclei are
counterstained with 4’,6-diamidino-2-phenylindole (DAPI). Scale bar, 100 um. (D) Densitometric quantification of type Il collagen staining in articular
cartilage following DMM (n=4). (E) Type X collagen immunofluorescence staining of wild-type and CXCR2 ™'~ mouse articular cartilage 8 weeks
following DMM. Nuclei are counterstained with DAPI. Scale bar, 100 um. (F) Densitometric quantification of ColX staining in articular cartilage

following DMM (n=4) *p<0.05, **p<0.01, ***p<0.001.

CXCR1/2 signalling is required for maintenance of articular
chondrocyte phenotypic stability in a cell-autonomous
fashion

OA is a disease of the whole joint and several mechanisms, both
within and outside of cartilage, contribute to its pathogenesis.
To investigate whether the homeostatic effects of CXCR2 signal-
ling on chondrocytes are cell-autonomous, we investigated
whether disruption of CXCR2 signalling in vitro in human
chondrocytes resulted in phenotypic changes. Specific simultan-
eous inhibition of CXCR1 and CXCR2 using blocking anti-
bodies in human primary chondrocytes (figure 4A), or by
siRNA in the JJ012 human chondrosarcoma cell line (figure
4B), resulted in reduced ECM production in micromass cul-
tures. Accordingly, treatment of human primary articular chon-
drocytes with anti-CXCR1 and CXCR2 blocking antibodies
resulted in the downregulation of SOX9, COL2A1 and aggrecan
mRNA in comparison to those treated with an isotype-matched
IgG negative control (figure 4C-E).

In keeping with these data, freshly isolated costal chondro-
cytes from CXCR2-deficient mice displayed reduced sulfated
proteoglycan accumulation compared with wild-type controls
when cultured in micromass (figure 4F) and expressed signifi-
cantly less SOX9 and COL2A1 mRNA (figure 4G, H).

Therefore, cell-autonomous CXCR1/2 signalling in human, and
CXCR?2 signalling in mouse, are required for the maintenance
of chondrocyte phenotypic stability.

CXCR2-dependant modulation of the chondrocyte

phenotype is AKT dependent

We then asked the question of what molecular mechanism links
CXCR?2 signalling to the maintenance of SOX9 expression and
related phenotypic stability. It is known that AKT mediates both
chemotactic CXCR2 signalling in neutrophils®! ** and anabolic
IGF-1 signalling in human chondrocytes.** Therefore, we tested
the hypothesis that CXCR2 signalling supports SOX9 expres-
sion via AKT activation.

CXCL6 dose-dependently induced AKT phosphorylation
in mouse primary chondrocytes (figure 5A). Less AKT phos-
phorylation was detected by western blotting in cell lysates
obtained from CXCR2-deficient mouse costal chondrocytes in
comparison to wild-type controls (figure 5B). In vivo, less phos-
phorylated AKT was detected in the articular cartilage of
CXCR2-deficient mice compared with wild-type controls
(figure 5C). In keeping with the decreased CXCL6 levels in OA,
AKT phosphorylation was also decreased following DMM in
wild-type mice (see online supplementary figure S3).
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Figure 4  Disruption of CXCR1/2 signalling results in chondrocyte de-differentiation and reduced extracellular matrix production in a
cell-autonomous fashion. (A) Alcian blue staining and spectrophotometric quantification for sulphated proteoglycan content of human articular
chondrocyte micromass cultures 4 days following treatment with either CXCR1 and CXCR2 blocking antibodies or a non-specific IgG isotype control
(n=4). (B) Spectrophotometric quantification of Alcian blue staining of JJ012 micromass cultures 4 days following CXCR1 and CXCR2 siRNA
transfection compared with scrambled siRNA-treated control (n=4). (C—E) Real-time RT-PCR analysis of chondrocyte phenotype marker genes SOX9,
COL2A1 and aggrecan expression in human primary chondrocytes 4 days following treatment with CXCR1 and CXCR2 blocking antibodies in
comparison to non-specific IgG isotype control (n=4). (F) Alcian blue staining and spectrophotometric quantification of wild-type and CXCR2 ™/~
mouse costal chondrocytes cultured for 7 days in micromass (n=8). (G, H) Real-time RT-PCR analysis of SOX9 and COL2A1 mRNA expression of
freshly isolated costal chondrocytes from wild-type and CXCR2™~ mice (n=4). *p<0.05, ***p<0.001, ****p<0.0001.

To assess whether CXCR2-induced AKT phosphorylation is
required for chondrocyte differentiation or whether it is simply
associated with it, we tested whether rescuing AKT activity also
rescued the differentiation of CXCR2-deficient chondrocytes.
Chondrocytes from wild-type and CXCR2-deficient mice were
transfected with a constitutively active AKT (caAKT)-expression
plasmid or empty plasmid as control. As expected, Sox9 mRNA
expression was reduced in CXCR2-deficient chondrocytes com-
pared with wild-type chondrocytes; however, SOX9 was
rescued to levels comparable to those of wild-type cells follow-
ing transfection with caAKT (figure 5D). The same pattern was
observed for type II collagen (figure SE). Transfection of
CXCR2-deficient chondrocytes with a SOX9 expressing
plasmid also resulted in the rescue of COL2A1 mRNA levels to
levels comparable to that of wild-type cells (figure 5F).

Similarly to CXCR2 deficiency, SOX9 deficiency in adult chon-
drocytes does not result in spontaneous OA>* but makes chondro-
cytes more prone to apoptosis,”® 3¢ a process that has been
demonstrated to drive cartilage loss during osteoarthritis.®” *®
Therefore, we tested whether CXCR2 disruption results in

increased chondrocyte apoptosis in an AKT-dependent manner.
First, at 8 weeks following DMM, CXCR2-deficient mice dis-
played significantly greater chondrocyte apoptosis within
the superficial cartilage layers compared with wild-type mice
(figure 6A, B). Although much lower than after DMM, the
number of apoptotic cells in the superficial layer of control joints
of CXCR2-deficient mice was significantly higher than in wild-
type controls (see online supplementary figure S4). Second,
siRNA-mediated knockdown of CXCR2 in the chondrogenic
ATDCS cells resulted in increased spontaneous apoptosis com-
pared with scrambled siRNA control. Overexpression of caAKT,
however, prevented the increase of apoptosis induced by the silen-
cing of CXCR2 (figure 6C, D). Taken together, these data suggest
that CXCR2 signalling protects chondrocytes from apoptosis in
conditions of challenge by supporting AKT phosphorylation and
SOX9 expression.

DISCUSSION
In this study, we discovered that CXCL6 is expressed by articu-
lar chondrocytes in physiological conditions and is retained
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Figure 5 CXCR2 modulation of the articular chondrocyte phenotype is mediated by AKT. (A) Western blot of phospho-AKT (ser473) in wild-type
mouse chondrocytes following 30 min incubation with recombinant mouse CXCL6. (B) Western blot comparison of phospho-AKT in freshly isolated

chondrocytes from wild-type and CXCR2~/~

mice. (C) Immunofluorescence staining for pAKT in mouse articular cartilage of unchallenged wild-type

and CXCR2~'~ mice, nuclei are stained with 4’,6-diamidino-2-phenylindole. Scale bar, 100 um. (D, E) Real-time RT-PCR analysis of SOX9 and
COL2A1 mRNA expression of wild type and CXCR2™~ early passage mouse chondrocytes 24 h following transfection with either a control empty
plasmid or constitutively active AKT (caAKT) expressing plasmid. (F) Real-time RT-PCR analysis of COL2A1T mRNA expression of wild-type and
CXCR2™"~ mouse chondrocytes 24 h following transfection with either a control empty plasmid or a SOX9 expressing plasmid, *p<0.05, **p<0.01,

***p<0.001.

locally in the cartilage matrix to contribute to the phenotypic
stability and functional homeostasis by supporting SOX9 expres-
sion in an AKT-dependent manner. Disruption of CXCR2 sig-
nalling resulted, in wivo, in increased susceptibility to
instability-induced OA, and iz vitro, in loss of differentiation
markers and ECM production.

Although no significant infiltration of inflammatory cells was
detected 8 weeks following DMM in either CXCR2™~ or wild-
type mice (see online supplementary figure S5), this experimen-
tal set-up does not allow us to assess whether additional
CXCR?2 functions in cells other than chondrocytes contributed
to the phenotype.

Our findings that CXCR1/2 signalling supports cartilage
homeostasis are not at odds with the well-established pathogenic
role of ELR+ CXC chemokines in arthritis.” 8 3*=* In physio-
logical conditions, a tight regulation of their expression,
together with their matrix binding through HSPGs, allows for
the restriction of their signalling domain to the avascular chon-
drocyte pericellular matrix, away from the reach of inflamma-
tory cells. In arthritis, ECM breakdown, together with the
upregulation of multiple chemokines, including CXCLS,**
would result in excessive and ectopic activation of chemokine

signalling in the joint with pathological consequences, while
simultaneously depriving chondrocytes of homeostatic local che-
mokine signalling (figure 6E).

Interestingly, other chemokine families have been linked to
physiological and even developmental roles outside of inflam-
mation including several developmental processes** ** and the
homeostasis of the haematopoietic system.*® This suggests that
compartmentalisation of chemokine signalling in specific tissue
contexts plays an important role in defining their function, and
that in specific situations, the disruption of such compartmental-
isation, rather than the expression of the chemokines them-
selves, may be pathogenic.

CXCR2-deficient mice did not develop spontaneous OA, but
their phenotype was elicited after joint destabilisation. If
CXCR1/2 signalling supports SOX9 expression, why did we
not observe spontaneous osteoarthritis in CXCR2-deficient
mice? In this respect it is interesting to notice that, although
SOX9 is essential for embryonic chondrogenesis,” its disrup-
tion in adulthood did not result in spontaneous OA;**
however, its absence from differentiated chondrocytes made
them susceptible to apoptosis.>® 3¢ Therefore, SOX9 is strictly
required for chondrogenesis, but, once chondrocytes are
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Figure 6 Disruption of CXCR2 signalling results in increased chondrocyte apoptosis in an AKT-dependent manner. (A) Terminal deoxynucleotidyl
transferase dUTP nick end labelling (TUNEL) staining of wild-type and CXCR2 ™~ articular cartilage 8 weeks following destabilisation of the medial
meniscus surgery. Scale bar, 100 um. (B) Quantification of TUNEL-positive chondrocytes in superficial and deep zones of articular cartilage of
wild-type and CXCR2 ™"~ mice (n=5). (C) TUNEL staining of monolayer differentiated ATDC5 24 h following co-transfection with either scrambled
control or CXCR2 siRNA along with either a control or caAKT expressing plasmid. Scale bar, 100 um. (D) Quantification of TUNEL-positive ATDC5
cells following siRNA and plasmid transfection (n=3) **p<0.01, ***p<0.001. (E) In healthy articular cartilage, CXCL6 is expressed by chondrocytes
and retained within the extracellular matrix (ECM) by HSPGs where it is available and required for signalling via CXCR1 and CXCR2 on nearby
chondrocytes for the maintenance of their phenotypic stability. During osteoarthritis, mechanical and inflammatory injury leads to the breakdown of
HSPGs within the ECM, leading to the release of CXCL6. This not only results in the release of CXCL6 from the articular cartilage, but disrupts the
cell-autonomous ELR+ CXC chemokine signalling mechanism required for chondrocyte homeostasis.

differentiated, it becomes only required in conditions of
challenge. A second consideration is that, since SOX9 is upre-
gulated following cartilage damage,*® *” the baseline expres-
sion of SOX9 is sufficient to support cartilage homeostasis in
physiological conditions, but is insufficient when, after cartil-
age damage, SOX9 upregulation is required.

It is interesting to note that the baseline phosphorylation of
AKT was reduced upon inhibition of CXCR2 signalling. Since,
in chondrocytes, AKT phosphorylation mediates IGF1 signal-
ling, which is a potent homeostatic signal supporting chondro-
cyte differentiation and ECM production,®® this suggests a
certain level of interaction between these two signalling path-
ways. The hierarchy of such interactions is yet to be determined.

The dual role of ELR+ CXC chemokines, homeostatic in
healthy cartilage and pathogenic in arthritis, represents an
important pharmacological challenge and yet an opportunity for
the development of targeted strategies for cytokine blockade that
preserve homeostatic mechanisms, while efficiently targeting the
synovial and systemic compartments. The heterogeneity of
mechanisms of cartilage damage in different subsets of patients is
likely to require personalised therapeutic intervention, addressing
individual disease mechanisms. We believe that further knowl-
edge of three aspects of chemokine biology will be key to achiev-
ing this therapeutic goal: first, the mechanism by which signalling
domains are defined and restricted; second, the role of ligand
and receptor specificity in fine-tuning the regulation of chemo-
kine signalling; and finally, the identification of suitable delivery
systems to target intervention to specific tissue compartments.
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