Article Text

Download PDFPDF
Gene therapy in autoimmune diseases
  1. C H EVANS,
  2. J D WHALEN
  1. C H EVANS,
  2. S C GHIVIZZANI,
  3. P D ROBBINS
  1. Department of Orthopaedic Surgery
  2. and Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA,USA
  1. Professor C H Evans, Orthopaedic Surgery, University Medical Center, 200 Lothrop Street, room C-313 Presbyterian University Hospital, Pittsburgh, PA 15213, USA.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Collectively, autoimmune diseases constitute a major, unmet, clinical challenge. Although no single autoimmune disorder is highly prevalent, there are over 80 of them, and 20% of the population is affected; approximately 75% of patients are women. Because these diseases are generally incurable and difficult to manage, there is a pressing need for novel approaches to their treatment. For reasons detailed below, we have proposed that gene therapy merits investigation in this regard.1

Why genes?

Traditional pharmacological approaches to treatment entail the synthesis of small, diffusable compounds given orally or by injection. These approaches have yet to provide ideal agents for use in autoimmune diseases. Recent research, however, has identified a number of proteins with the potential to improve treatment, but these are difficult to administer long term. Gene transfer provides the opportunity to deliver protein products, as well as therapeutic species of nucleic acids, such as antisense RNA, much more efficiently than traditional methods of drug therapy. Furthermore sustained, in situ production of the gene products would eliminate the need for frequent re-administration. In addition, gene delivery and subsequent expression has the potential to be highly localised, if needed. Indeed, gene therapy’s greatest strength may be its ability to produce high, sustained concentrations of therapeutic macromolecules within a defined anatomical location. In the case of RA, for example, anti-arthritic proteins are already being delivered systemically to patients by subcutaneous or intravenous injection. There is, however, no practical method for transferring these molecules selectively to joints in a sustained fashion.

Gene therapy

In its broadest sense, gene therapy is the transfer to patients of a gene, or genes, for therapeutic purposes. With some exceptions, such as skeletal muscle and skin, naked DNA is not efficiently taken up and expressed by mammalian cells. For this reason it is necessary to use vectors as agents of …

View Full Text